Metamath Proof Explorer


Theorem lclkrlem2r

Description: Lemma for lclkr . When B is zero, i.e. when X and Y are colinear, the intersection of the kernels of E and G equal the kernel of G , so the kernels of G and the sum are comparable. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V = Base U
lclkrlem2m.t · ˙ = U
lclkrlem2m.s S = Scalar U
lclkrlem2m.q × ˙ = S
lclkrlem2m.z 0 ˙ = 0 S
lclkrlem2m.i I = inv r S
lclkrlem2m.m - ˙ = - U
lclkrlem2m.f F = LFnl U
lclkrlem2m.d D = LDual U
lclkrlem2m.p + ˙ = + D
lclkrlem2m.x φ X V
lclkrlem2m.y φ Y V
lclkrlem2m.e φ E F
lclkrlem2m.g φ G F
lclkrlem2n.n N = LSpan U
lclkrlem2n.l L = LKer U
lclkrlem2o.h H = LHyp K
lclkrlem2o.o ˙ = ocH K W
lclkrlem2o.u U = DVecH K W
lclkrlem2o.a ˙ = LSSum U
lclkrlem2o.k φ K HL W H
lclkrlem2q.le φ L E = ˙ X
lclkrlem2q.lg φ L G = ˙ Y
lclkrlem2q.b B = X - ˙ E + ˙ G X × ˙ I E + ˙ G Y · ˙ Y
lclkrlem2q.n φ E + ˙ G Y 0 ˙
lclkrlem2r.bn φ B = 0 U
Assertion lclkrlem2r φ L G L E + ˙ G

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V = Base U
2 lclkrlem2m.t · ˙ = U
3 lclkrlem2m.s S = Scalar U
4 lclkrlem2m.q × ˙ = S
5 lclkrlem2m.z 0 ˙ = 0 S
6 lclkrlem2m.i I = inv r S
7 lclkrlem2m.m - ˙ = - U
8 lclkrlem2m.f F = LFnl U
9 lclkrlem2m.d D = LDual U
10 lclkrlem2m.p + ˙ = + D
11 lclkrlem2m.x φ X V
12 lclkrlem2m.y φ Y V
13 lclkrlem2m.e φ E F
14 lclkrlem2m.g φ G F
15 lclkrlem2n.n N = LSpan U
16 lclkrlem2n.l L = LKer U
17 lclkrlem2o.h H = LHyp K
18 lclkrlem2o.o ˙ = ocH K W
19 lclkrlem2o.u U = DVecH K W
20 lclkrlem2o.a ˙ = LSSum U
21 lclkrlem2o.k φ K HL W H
22 lclkrlem2q.le φ L E = ˙ X
23 lclkrlem2q.lg φ L G = ˙ Y
24 lclkrlem2q.b B = X - ˙ E + ˙ G X × ˙ I E + ˙ G Y · ˙ Y
25 lclkrlem2q.n φ E + ˙ G Y 0 ˙
26 lclkrlem2r.bn φ B = 0 U
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26 lclkrlem2p φ ˙ Y ˙ X
28 27 23 22 3sstr4d φ L G L E
29 sseqin2 L G L E L E L G = L G
30 28 29 sylib φ L E L G = L G
31 17 19 21 dvhlmod φ U LMod
32 8 16 9 10 31 13 14 lkrin φ L E L G L E + ˙ G
33 30 32 eqsstrrd φ L G L E + ˙ G