Metamath Proof Explorer


Theorem lclkrlem2p

Description: Lemma for lclkr . When B is zero, X and Y must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V=BaseU
lclkrlem2m.t ·˙=U
lclkrlem2m.s S=ScalarU
lclkrlem2m.q ×˙=S
lclkrlem2m.z 0˙=0S
lclkrlem2m.i I=invrS
lclkrlem2m.m -˙=-U
lclkrlem2m.f F=LFnlU
lclkrlem2m.d D=LDualU
lclkrlem2m.p +˙=+D
lclkrlem2m.x φXV
lclkrlem2m.y φYV
lclkrlem2m.e φEF
lclkrlem2m.g φGF
lclkrlem2n.n N=LSpanU
lclkrlem2n.l L=LKerU
lclkrlem2o.h H=LHypK
lclkrlem2o.o ˙=ocHKW
lclkrlem2o.u U=DVecHKW
lclkrlem2o.a ˙=LSSumU
lclkrlem2o.k φKHLWH
lclkrlem2o.b B=X-˙E+˙GX×˙IE+˙GY·˙Y
lclkrlem2o.n φE+˙GY0˙
lclkrlem2p.bn φB=0U
Assertion lclkrlem2p φ˙Y˙X

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V=BaseU
2 lclkrlem2m.t ·˙=U
3 lclkrlem2m.s S=ScalarU
4 lclkrlem2m.q ×˙=S
5 lclkrlem2m.z 0˙=0S
6 lclkrlem2m.i I=invrS
7 lclkrlem2m.m -˙=-U
8 lclkrlem2m.f F=LFnlU
9 lclkrlem2m.d D=LDualU
10 lclkrlem2m.p +˙=+D
11 lclkrlem2m.x φXV
12 lclkrlem2m.y φYV
13 lclkrlem2m.e φEF
14 lclkrlem2m.g φGF
15 lclkrlem2n.n N=LSpanU
16 lclkrlem2n.l L=LKerU
17 lclkrlem2o.h H=LHypK
18 lclkrlem2o.o ˙=ocHKW
19 lclkrlem2o.u U=DVecHKW
20 lclkrlem2o.a ˙=LSSumU
21 lclkrlem2o.k φKHLWH
22 lclkrlem2o.b B=X-˙E+˙GX×˙IE+˙GY·˙Y
23 lclkrlem2o.n φE+˙GY0˙
24 lclkrlem2p.bn φB=0U
25 17 19 21 dvhlmod φULMod
26 eqid LSubSpU=LSubSpU
27 1 26 15 lspsncl ULModYVNYLSubSpU
28 25 12 27 syl2anc φNYLSubSpU
29 1 26 lssss NYLSubSpUNYV
30 28 29 syl φNYV
31 22 24 eqtr3id φX-˙E+˙GX×˙IE+˙GY·˙Y=0U
32 3 lmodring ULModSRing
33 25 32 syl φSRing
34 8 9 10 25 13 14 ldualvaddcl φE+˙GF
35 eqid BaseS=BaseS
36 3 35 1 8 lflcl ULModE+˙GFXVE+˙GXBaseS
37 25 34 11 36 syl3anc φE+˙GXBaseS
38 17 19 21 dvhlvec φULVec
39 3 lvecdrng ULVecSDivRing
40 38 39 syl φSDivRing
41 3 35 1 8 lflcl ULModE+˙GFYVE+˙GYBaseS
42 25 34 12 41 syl3anc φE+˙GYBaseS
43 35 5 6 drnginvrcl SDivRingE+˙GYBaseSE+˙GY0˙IE+˙GYBaseS
44 40 42 23 43 syl3anc φIE+˙GYBaseS
45 35 4 ringcl SRingE+˙GXBaseSIE+˙GYBaseSE+˙GX×˙IE+˙GYBaseS
46 33 37 44 45 syl3anc φE+˙GX×˙IE+˙GYBaseS
47 1 3 2 35 lmodvscl ULModE+˙GX×˙IE+˙GYBaseSYVE+˙GX×˙IE+˙GY·˙YV
48 25 46 12 47 syl3anc φE+˙GX×˙IE+˙GY·˙YV
49 eqid 0U=0U
50 1 49 7 lmodsubeq0 ULModXVE+˙GX×˙IE+˙GY·˙YVX-˙E+˙GX×˙IE+˙GY·˙Y=0UX=E+˙GX×˙IE+˙GY·˙Y
51 25 11 48 50 syl3anc φX-˙E+˙GX×˙IE+˙GY·˙Y=0UX=E+˙GX×˙IE+˙GY·˙Y
52 31 51 mpbid φX=E+˙GX×˙IE+˙GY·˙Y
53 52 sneqd φX=E+˙GX×˙IE+˙GY·˙Y
54 53 fveq2d φNX=NE+˙GX×˙IE+˙GY·˙Y
55 3 35 1 2 15 lspsnvsi ULModE+˙GX×˙IE+˙GYBaseSYVNE+˙GX×˙IE+˙GY·˙YNY
56 25 46 12 55 syl3anc φNE+˙GX×˙IE+˙GY·˙YNY
57 54 56 eqsstrd φNXNY
58 17 19 1 18 dochss KHLWHNYVNXNY˙NY˙NX
59 21 30 57 58 syl3anc φ˙NY˙NX
60 12 snssd φYV
61 17 19 18 1 15 21 60 dochocsp φ˙NY=˙Y
62 11 snssd φXV
63 17 19 18 1 15 21 62 dochocsp φ˙NX=˙X
64 59 61 63 3sstr3d φ˙Y˙X