Description: Lemma for lclkr . When B is zero, X and Y must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2m.v | |
|
lclkrlem2m.t | |
||
lclkrlem2m.s | |
||
lclkrlem2m.q | |
||
lclkrlem2m.z | |
||
lclkrlem2m.i | |
||
lclkrlem2m.m | |
||
lclkrlem2m.f | |
||
lclkrlem2m.d | |
||
lclkrlem2m.p | |
||
lclkrlem2m.x | |
||
lclkrlem2m.y | |
||
lclkrlem2m.e | |
||
lclkrlem2m.g | |
||
lclkrlem2n.n | |
||
lclkrlem2n.l | |
||
lclkrlem2o.h | |
||
lclkrlem2o.o | |
||
lclkrlem2o.u | |
||
lclkrlem2o.a | |
||
lclkrlem2o.k | |
||
lclkrlem2o.b | |
||
lclkrlem2o.n | |
||
lclkrlem2p.bn | |
||
Assertion | lclkrlem2p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | |
|
2 | lclkrlem2m.t | |
|
3 | lclkrlem2m.s | |
|
4 | lclkrlem2m.q | |
|
5 | lclkrlem2m.z | |
|
6 | lclkrlem2m.i | |
|
7 | lclkrlem2m.m | |
|
8 | lclkrlem2m.f | |
|
9 | lclkrlem2m.d | |
|
10 | lclkrlem2m.p | |
|
11 | lclkrlem2m.x | |
|
12 | lclkrlem2m.y | |
|
13 | lclkrlem2m.e | |
|
14 | lclkrlem2m.g | |
|
15 | lclkrlem2n.n | |
|
16 | lclkrlem2n.l | |
|
17 | lclkrlem2o.h | |
|
18 | lclkrlem2o.o | |
|
19 | lclkrlem2o.u | |
|
20 | lclkrlem2o.a | |
|
21 | lclkrlem2o.k | |
|
22 | lclkrlem2o.b | |
|
23 | lclkrlem2o.n | |
|
24 | lclkrlem2p.bn | |
|
25 | 17 19 21 | dvhlmod | |
26 | eqid | |
|
27 | 1 26 15 | lspsncl | |
28 | 25 12 27 | syl2anc | |
29 | 1 26 | lssss | |
30 | 28 29 | syl | |
31 | 22 24 | eqtr3id | |
32 | 3 | lmodring | |
33 | 25 32 | syl | |
34 | 8 9 10 25 13 14 | ldualvaddcl | |
35 | eqid | |
|
36 | 3 35 1 8 | lflcl | |
37 | 25 34 11 36 | syl3anc | |
38 | 17 19 21 | dvhlvec | |
39 | 3 | lvecdrng | |
40 | 38 39 | syl | |
41 | 3 35 1 8 | lflcl | |
42 | 25 34 12 41 | syl3anc | |
43 | 35 5 6 | drnginvrcl | |
44 | 40 42 23 43 | syl3anc | |
45 | 35 4 | ringcl | |
46 | 33 37 44 45 | syl3anc | |
47 | 1 3 2 35 | lmodvscl | |
48 | 25 46 12 47 | syl3anc | |
49 | eqid | |
|
50 | 1 49 7 | lmodsubeq0 | |
51 | 25 11 48 50 | syl3anc | |
52 | 31 51 | mpbid | |
53 | 52 | sneqd | |
54 | 53 | fveq2d | |
55 | 3 35 1 2 15 | lspsnvsi | |
56 | 25 46 12 55 | syl3anc | |
57 | 54 56 | eqsstrd | |
58 | 17 19 1 18 | dochss | |
59 | 21 30 57 58 | syl3anc | |
60 | 12 | snssd | |
61 | 17 19 18 1 15 21 60 | dochocsp | |
62 | 11 | snssd | |
63 | 17 19 18 1 15 21 62 | dochocsp | |
64 | 59 61 63 | 3sstr3d | |