Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2m.v |
|
2 |
|
lclkrlem2m.t |
|
3 |
|
lclkrlem2m.s |
|
4 |
|
lclkrlem2m.q |
|
5 |
|
lclkrlem2m.z |
|
6 |
|
lclkrlem2m.i |
|
7 |
|
lclkrlem2m.m |
|
8 |
|
lclkrlem2m.f |
|
9 |
|
lclkrlem2m.d |
|
10 |
|
lclkrlem2m.p |
|
11 |
|
lclkrlem2m.x |
|
12 |
|
lclkrlem2m.y |
|
13 |
|
lclkrlem2m.e |
|
14 |
|
lclkrlem2m.g |
|
15 |
|
lclkrlem2n.n |
|
16 |
|
lclkrlem2n.l |
|
17 |
|
lclkrlem2o.h |
|
18 |
|
lclkrlem2o.o |
|
19 |
|
lclkrlem2o.u |
|
20 |
|
lclkrlem2o.a |
|
21 |
|
lclkrlem2o.k |
|
22 |
|
lclkrlem2o.b |
|
23 |
|
lclkrlem2o.n |
|
24 |
|
lclkrlem2p.bn |
|
25 |
17 19 21
|
dvhlmod |
|
26 |
|
eqid |
|
27 |
1 26 15
|
lspsncl |
|
28 |
25 12 27
|
syl2anc |
|
29 |
1 26
|
lssss |
|
30 |
28 29
|
syl |
|
31 |
22 24
|
eqtr3id |
|
32 |
3
|
lmodring |
|
33 |
25 32
|
syl |
|
34 |
8 9 10 25 13 14
|
ldualvaddcl |
|
35 |
|
eqid |
|
36 |
3 35 1 8
|
lflcl |
|
37 |
25 34 11 36
|
syl3anc |
|
38 |
17 19 21
|
dvhlvec |
|
39 |
3
|
lvecdrng |
|
40 |
38 39
|
syl |
|
41 |
3 35 1 8
|
lflcl |
|
42 |
25 34 12 41
|
syl3anc |
|
43 |
35 5 6
|
drnginvrcl |
|
44 |
40 42 23 43
|
syl3anc |
|
45 |
35 4
|
ringcl |
|
46 |
33 37 44 45
|
syl3anc |
|
47 |
1 3 2 35
|
lmodvscl |
|
48 |
25 46 12 47
|
syl3anc |
|
49 |
|
eqid |
|
50 |
1 49 7
|
lmodsubeq0 |
|
51 |
25 11 48 50
|
syl3anc |
|
52 |
31 51
|
mpbid |
|
53 |
52
|
sneqd |
|
54 |
53
|
fveq2d |
|
55 |
3 35 1 2 15
|
lspsnvsi |
|
56 |
25 46 12 55
|
syl3anc |
|
57 |
54 56
|
eqsstrd |
|
58 |
17 19 1 18
|
dochss |
|
59 |
21 30 57 58
|
syl3anc |
|
60 |
12
|
snssd |
|
61 |
17 19 18 1 15 21 60
|
dochocsp |
|
62 |
11
|
snssd |
|
63 |
17 19 18 1 15 21 62
|
dochocsp |
|
64 |
59 61 63
|
3sstr3d |
|