Metamath Proof Explorer


Theorem lclkrlem2p

Description: Lemma for lclkr . When B is zero, X and Y must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v 𝑉 = ( Base ‘ 𝑈 )
lclkrlem2m.t · = ( ·𝑠𝑈 )
lclkrlem2m.s 𝑆 = ( Scalar ‘ 𝑈 )
lclkrlem2m.q × = ( .r𝑆 )
lclkrlem2m.z 0 = ( 0g𝑆 )
lclkrlem2m.i 𝐼 = ( invr𝑆 )
lclkrlem2m.m = ( -g𝑈 )
lclkrlem2m.f 𝐹 = ( LFnl ‘ 𝑈 )
lclkrlem2m.d 𝐷 = ( LDual ‘ 𝑈 )
lclkrlem2m.p + = ( +g𝐷 )
lclkrlem2m.x ( 𝜑𝑋𝑉 )
lclkrlem2m.y ( 𝜑𝑌𝑉 )
lclkrlem2m.e ( 𝜑𝐸𝐹 )
lclkrlem2m.g ( 𝜑𝐺𝐹 )
lclkrlem2n.n 𝑁 = ( LSpan ‘ 𝑈 )
lclkrlem2n.l 𝐿 = ( LKer ‘ 𝑈 )
lclkrlem2o.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkrlem2o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2o.a = ( LSSum ‘ 𝑈 )
lclkrlem2o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lclkrlem2o.b 𝐵 = ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) )
lclkrlem2o.n ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 )
lclkrlem2p.bn ( 𝜑𝐵 = ( 0g𝑈 ) )
Assertion lclkrlem2p ( 𝜑 → ( ‘ { 𝑌 } ) ⊆ ( ‘ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v 𝑉 = ( Base ‘ 𝑈 )
2 lclkrlem2m.t · = ( ·𝑠𝑈 )
3 lclkrlem2m.s 𝑆 = ( Scalar ‘ 𝑈 )
4 lclkrlem2m.q × = ( .r𝑆 )
5 lclkrlem2m.z 0 = ( 0g𝑆 )
6 lclkrlem2m.i 𝐼 = ( invr𝑆 )
7 lclkrlem2m.m = ( -g𝑈 )
8 lclkrlem2m.f 𝐹 = ( LFnl ‘ 𝑈 )
9 lclkrlem2m.d 𝐷 = ( LDual ‘ 𝑈 )
10 lclkrlem2m.p + = ( +g𝐷 )
11 lclkrlem2m.x ( 𝜑𝑋𝑉 )
12 lclkrlem2m.y ( 𝜑𝑌𝑉 )
13 lclkrlem2m.e ( 𝜑𝐸𝐹 )
14 lclkrlem2m.g ( 𝜑𝐺𝐹 )
15 lclkrlem2n.n 𝑁 = ( LSpan ‘ 𝑈 )
16 lclkrlem2n.l 𝐿 = ( LKer ‘ 𝑈 )
17 lclkrlem2o.h 𝐻 = ( LHyp ‘ 𝐾 )
18 lclkrlem2o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
19 lclkrlem2o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
20 lclkrlem2o.a = ( LSSum ‘ 𝑈 )
21 lclkrlem2o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
22 lclkrlem2o.b 𝐵 = ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) )
23 lclkrlem2o.n ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 )
24 lclkrlem2p.bn ( 𝜑𝐵 = ( 0g𝑈 ) )
25 17 19 21 dvhlmod ( 𝜑𝑈 ∈ LMod )
26 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
27 1 26 15 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
28 25 12 27 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
29 1 26 lssss ( ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 )
30 28 29 syl ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 )
31 22 24 eqtr3id ( 𝜑 → ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g𝑈 ) )
32 3 lmodring ( 𝑈 ∈ LMod → 𝑆 ∈ Ring )
33 25 32 syl ( 𝜑𝑆 ∈ Ring )
34 8 9 10 25 13 14 ldualvaddcl ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 )
35 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
36 3 35 1 8 lflcl ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹𝑋𝑉 ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) )
37 25 34 11 36 syl3anc ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) )
38 17 19 21 dvhlvec ( 𝜑𝑈 ∈ LVec )
39 3 lvecdrng ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing )
40 38 39 syl ( 𝜑𝑆 ∈ DivRing )
41 3 35 1 8 lflcl ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹𝑌𝑉 ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) )
42 25 34 12 41 syl3anc ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) )
43 35 5 6 drnginvrcl ( ( 𝑆 ∈ DivRing ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) → ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) )
44 40 42 23 43 syl3anc ( 𝜑 → ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) )
45 35 4 ringcl ( ( 𝑆 ∈ Ring ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) )
46 33 37 44 45 syl3anc ( 𝜑 → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) )
47 1 3 2 35 lmodvscl ( ( 𝑈 ∈ LMod ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑌𝑉 ) → ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ 𝑉 )
48 25 46 12 47 syl3anc ( 𝜑 → ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ 𝑉 )
49 eqid ( 0g𝑈 ) = ( 0g𝑈 )
50 1 49 7 lmodsubeq0 ( ( 𝑈 ∈ LMod ∧ 𝑋𝑉 ∧ ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ 𝑉 ) → ( ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g𝑈 ) ↔ 𝑋 = ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) )
51 25 11 48 50 syl3anc ( 𝜑 → ( ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g𝑈 ) ↔ 𝑋 = ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) )
52 31 51 mpbid ( 𝜑𝑋 = ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) )
53 52 sneqd ( 𝜑 → { 𝑋 } = { ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) } )
54 53 fveq2d ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) } ) )
55 3 35 1 2 15 lspsnvsi ( ( 𝑈 ∈ LMod ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) )
56 25 46 12 55 syl3anc ( 𝜑 → ( 𝑁 ‘ { ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) )
57 54 56 eqsstrd ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) )
58 17 19 1 18 dochss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → ( ‘ ( 𝑁 ‘ { 𝑌 } ) ) ⊆ ( ‘ ( 𝑁 ‘ { 𝑋 } ) ) )
59 21 30 57 58 syl3anc ( 𝜑 → ( ‘ ( 𝑁 ‘ { 𝑌 } ) ) ⊆ ( ‘ ( 𝑁 ‘ { 𝑋 } ) ) )
60 12 snssd ( 𝜑 → { 𝑌 } ⊆ 𝑉 )
61 17 19 18 1 15 21 60 dochocsp ( 𝜑 → ( ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( ‘ { 𝑌 } ) )
62 11 snssd ( 𝜑 → { 𝑋 } ⊆ 𝑉 )
63 17 19 18 1 15 21 62 dochocsp ( 𝜑 → ( ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ‘ { 𝑋 } ) )
64 59 61 63 3sstr3d ( 𝜑 → ( ‘ { 𝑌 } ) ⊆ ( ‘ { 𝑋 } ) )