Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2m.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
2 |
|
lclkrlem2m.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
3 |
|
lclkrlem2m.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
4 |
|
lclkrlem2m.q |
⊢ × = ( .r ‘ 𝑆 ) |
5 |
|
lclkrlem2m.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
6 |
|
lclkrlem2m.i |
⊢ 𝐼 = ( invr ‘ 𝑆 ) |
7 |
|
lclkrlem2m.m |
⊢ − = ( -g ‘ 𝑈 ) |
8 |
|
lclkrlem2m.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
9 |
|
lclkrlem2m.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
10 |
|
lclkrlem2m.p |
⊢ + = ( +g ‘ 𝐷 ) |
11 |
|
lclkrlem2m.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
12 |
|
lclkrlem2m.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
13 |
|
lclkrlem2m.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
14 |
|
lclkrlem2m.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
15 |
|
lclkrlem2n.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
16 |
|
lclkrlem2n.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
17 |
|
lclkrlem2o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
18 |
|
lclkrlem2o.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
|
lclkrlem2o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
20 |
|
lclkrlem2o.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
21 |
|
lclkrlem2o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
22 |
|
lclkrlem2o.b |
⊢ 𝐵 = ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) |
23 |
|
lclkrlem2o.n |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) |
24 |
|
lclkrlem2p.bn |
⊢ ( 𝜑 → 𝐵 = ( 0g ‘ 𝑈 ) ) |
25 |
17 19 21
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
26 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
27 |
1 26 15
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
28 |
25 12 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
29 |
1 26
|
lssss |
⊢ ( ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
31 |
22 24
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) |
32 |
3
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑆 ∈ Ring ) |
33 |
25 32
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
34 |
8 9 10 25 13 14
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
36 |
3 35 1 8
|
lflcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
37 |
25 34 11 36
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
38 |
17 19 21
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
39 |
3
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ DivRing ) |
41 |
3 35 1 8
|
lflcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
42 |
25 34 12 41
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
43 |
35 5 6
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) → ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) ) |
44 |
40 42 23 43
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) ) |
45 |
35 4
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
46 |
33 37 44 45
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
47 |
1 3 2 35
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 ∈ 𝑉 ) → ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ 𝑉 ) |
48 |
25 46 12 47
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ 𝑉 ) |
49 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
50 |
1 49 7
|
lmodsubeq0 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ 𝑉 ) → ( ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ↔ 𝑋 = ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ) |
51 |
25 11 48 50
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ↔ 𝑋 = ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ) |
52 |
31 51
|
mpbid |
⊢ ( 𝜑 → 𝑋 = ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) |
53 |
52
|
sneqd |
⊢ ( 𝜑 → { 𝑋 } = { ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) } ) |
54 |
53
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) } ) ) |
55 |
3 35 1 2 15
|
lspsnvsi |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
56 |
25 46 12 55
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
57 |
54 56
|
eqsstrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
58 |
17 19 1 18
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → ( ⊥ ‘ ( 𝑁 ‘ { 𝑌 } ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) |
59 |
21 30 57 58
|
syl3anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑌 } ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) |
60 |
12
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
61 |
17 19 18 1 15 21 60
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( ⊥ ‘ { 𝑌 } ) ) |
62 |
11
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
63 |
17 19 18 1 15 21 62
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
64 |
59 61 63
|
3sstr3d |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑌 } ) ⊆ ( ⊥ ‘ { 𝑋 } ) ) |