| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | lclkrlem2m.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 3 |  | lclkrlem2m.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | lclkrlem2m.q | ⊢  ×   =  ( .r ‘ 𝑆 ) | 
						
							| 5 |  | lclkrlem2m.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 6 |  | lclkrlem2m.i | ⊢ 𝐼  =  ( invr ‘ 𝑆 ) | 
						
							| 7 |  | lclkrlem2m.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2m.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2m.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 10 |  | lclkrlem2m.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 11 |  | lclkrlem2m.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 12 |  | lclkrlem2m.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 13 |  | lclkrlem2m.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 14 |  | lclkrlem2m.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 15 |  | lclkrlem2n.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 16 |  | lclkrlem2n.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 17 |  | lclkrlem2o.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 18 |  | lclkrlem2o.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 |  | lclkrlem2o.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 20 |  | lclkrlem2o.a | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 21 |  | lclkrlem2o.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 22 |  | lclkrlem2o.b | ⊢ 𝐵  =  ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) | 
						
							| 23 |  | lclkrlem2o.n | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠   0  ) | 
						
							| 24 |  | lclkrlem2p.bn | ⊢ ( 𝜑  →  𝐵  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 25 | 17 19 21 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 26 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 27 | 1 26 15 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 28 | 25 12 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 29 | 1 26 | lssss | ⊢ ( ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 )  →  ( 𝑁 ‘ { 𝑌 } )  ⊆  𝑉 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ⊆  𝑉 ) | 
						
							| 31 | 22 24 | eqtr3id | ⊢ ( 𝜑  →  ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 32 | 3 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑆  ∈  Ring ) | 
						
							| 33 | 25 32 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 34 | 8 9 10 25 13 14 | ldualvaddcl | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  𝐹 ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 36 | 3 35 1 8 | lflcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐸  +  𝐺 )  ∈  𝐹  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 37 | 25 34 11 36 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 38 | 17 19 21 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 39 | 3 | lvecdrng | ⊢ ( 𝑈  ∈  LVec  →  𝑆  ∈  DivRing ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝜑  →  𝑆  ∈  DivRing ) | 
						
							| 41 | 3 35 1 8 | lflcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐸  +  𝐺 )  ∈  𝐹  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 42 | 25 34 12 41 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 43 | 35 5 6 | drnginvrcl | ⊢ ( ( 𝑆  ∈  DivRing  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠   0  )  →  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 44 | 40 42 23 43 | syl3anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 45 | 35 4 | ringcl | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 46 | 33 37 44 45 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 47 | 1 3 2 35 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 )  ∧  𝑌  ∈  𝑉 )  →  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 48 | 25 46 12 47 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 49 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 50 | 1 49 7 | lmodsubeq0 | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝑉  ∧  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  𝑉 )  →  ( ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  =  ( 0g ‘ 𝑈 )  ↔  𝑋  =  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) ) | 
						
							| 51 | 25 11 48 50 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  =  ( 0g ‘ 𝑈 )  ↔  𝑋  =  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) ) | 
						
							| 52 | 31 51 | mpbid | ⊢ ( 𝜑  →  𝑋  =  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) | 
						
							| 53 | 52 | sneqd | ⊢ ( 𝜑  →  { 𝑋 }  =  { ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) } ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) } ) ) | 
						
							| 55 | 3 35 1 2 15 | lspsnvsi | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 )  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 56 | 25 46 12 55 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 57 | 54 56 | eqsstrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 58 | 17 19 1 18 | dochss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑁 ‘ { 𝑌 } )  ⊆  𝑉  ∧  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) )  →  (  ⊥  ‘ ( 𝑁 ‘ { 𝑌 } ) )  ⊆  (  ⊥  ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) | 
						
							| 59 | 21 30 57 58 | syl3anc | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝑁 ‘ { 𝑌 } ) )  ⊆  (  ⊥  ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) | 
						
							| 60 | 12 | snssd | ⊢ ( 𝜑  →  { 𝑌 }  ⊆  𝑉 ) | 
						
							| 61 | 17 19 18 1 15 21 60 | dochocsp | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 62 | 11 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑉 ) | 
						
							| 63 | 17 19 18 1 15 21 62 | dochocsp | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 64 | 59 61 63 | 3sstr3d | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑌 } )  ⊆  (  ⊥  ‘ { 𝑋 } ) ) |