Metamath Proof Explorer


Theorem lclkrlem2q

Description: Lemma for lclkr . The sum has a closed kernel when B is nonzero. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v 𝑉 = ( Base ‘ 𝑈 )
lclkrlem2m.t · = ( ·𝑠𝑈 )
lclkrlem2m.s 𝑆 = ( Scalar ‘ 𝑈 )
lclkrlem2m.q × = ( .r𝑆 )
lclkrlem2m.z 0 = ( 0g𝑆 )
lclkrlem2m.i 𝐼 = ( invr𝑆 )
lclkrlem2m.m = ( -g𝑈 )
lclkrlem2m.f 𝐹 = ( LFnl ‘ 𝑈 )
lclkrlem2m.d 𝐷 = ( LDual ‘ 𝑈 )
lclkrlem2m.p + = ( +g𝐷 )
lclkrlem2m.x ( 𝜑𝑋𝑉 )
lclkrlem2m.y ( 𝜑𝑌𝑉 )
lclkrlem2m.e ( 𝜑𝐸𝐹 )
lclkrlem2m.g ( 𝜑𝐺𝐹 )
lclkrlem2n.n 𝑁 = ( LSpan ‘ 𝑈 )
lclkrlem2n.l 𝐿 = ( LKer ‘ 𝑈 )
lclkrlem2o.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkrlem2o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2o.a = ( LSSum ‘ 𝑈 )
lclkrlem2o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lclkrlem2q.le ( 𝜑 → ( 𝐿𝐸 ) = ( ‘ { 𝑋 } ) )
lclkrlem2q.lg ( 𝜑 → ( 𝐿𝐺 ) = ( ‘ { 𝑌 } ) )
lclkrlem2q.b 𝐵 = ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) )
lclkrlem2q.n ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 )
lclkrlem2q.bn ( 𝜑𝐵 ≠ ( 0g𝑈 ) )
Assertion lclkrlem2q ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v 𝑉 = ( Base ‘ 𝑈 )
2 lclkrlem2m.t · = ( ·𝑠𝑈 )
3 lclkrlem2m.s 𝑆 = ( Scalar ‘ 𝑈 )
4 lclkrlem2m.q × = ( .r𝑆 )
5 lclkrlem2m.z 0 = ( 0g𝑆 )
6 lclkrlem2m.i 𝐼 = ( invr𝑆 )
7 lclkrlem2m.m = ( -g𝑈 )
8 lclkrlem2m.f 𝐹 = ( LFnl ‘ 𝑈 )
9 lclkrlem2m.d 𝐷 = ( LDual ‘ 𝑈 )
10 lclkrlem2m.p + = ( +g𝐷 )
11 lclkrlem2m.x ( 𝜑𝑋𝑉 )
12 lclkrlem2m.y ( 𝜑𝑌𝑉 )
13 lclkrlem2m.e ( 𝜑𝐸𝐹 )
14 lclkrlem2m.g ( 𝜑𝐺𝐹 )
15 lclkrlem2n.n 𝑁 = ( LSpan ‘ 𝑈 )
16 lclkrlem2n.l 𝐿 = ( LKer ‘ 𝑈 )
17 lclkrlem2o.h 𝐻 = ( LHyp ‘ 𝐾 )
18 lclkrlem2o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
19 lclkrlem2o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
20 lclkrlem2o.a = ( LSSum ‘ 𝑈 )
21 lclkrlem2o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
22 lclkrlem2q.le ( 𝜑 → ( 𝐿𝐸 ) = ( ‘ { 𝑋 } ) )
23 lclkrlem2q.lg ( 𝜑 → ( 𝐿𝐺 ) = ( ‘ { 𝑌 } ) )
24 lclkrlem2q.b 𝐵 = ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) )
25 lclkrlem2q.n ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 )
26 lclkrlem2q.bn ( 𝜑𝐵 ≠ ( 0g𝑈 ) )
27 eqid ( 0g𝑈 ) = ( 0g𝑈 )
28 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
29 17 19 21 dvhlvec ( 𝜑𝑈 ∈ LVec )
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 29 24 25 lclkrlem2m ( 𝜑 → ( 𝐵𝑉 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 0 ) )
31 30 simpld ( 𝜑𝐵𝑉 )
32 eldifsn ( 𝐵 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) ↔ ( 𝐵𝑉𝐵 ≠ ( 0g𝑈 ) ) )
33 31 26 32 sylanbrc ( 𝜑𝐵 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
34 30 simprd ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 0 )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26 lclkrlem2o ( 𝜑 → ( ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ‘ { 𝐵 } ) ) )
36 17 18 19 1 3 5 27 20 15 8 28 16 9 10 21 33 13 14 22 23 34 35 11 12 lclkrlem2l ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )