| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2f.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrlem2f.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrlem2f.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2f.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | lclkrlem2f.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2f.q | ⊢ 𝑄  =  ( 0g ‘ 𝑆 ) | 
						
							| 7 |  | lclkrlem2f.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2f.a | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2f.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 10 |  | lclkrlem2f.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 11 |  | lclkrlem2f.j | ⊢ 𝐽  =  ( LSHyp ‘ 𝑈 ) | 
						
							| 12 |  | lclkrlem2f.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 13 |  | lclkrlem2f.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 14 |  | lclkrlem2f.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 15 |  | lclkrlem2f.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | lclkrlem2f.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 17 |  | lclkrlem2f.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 18 |  | lclkrlem2f.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 19 |  | lclkrlem2f.le | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 20 |  | lclkrlem2f.lg | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 21 |  | lclkrlem2f.kb | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =  𝑄 ) | 
						
							| 22 |  | lclkrlem2f.nx | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 23 |  | lclkrlem2l.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 24 |  | lclkrlem2l.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 25 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 26 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 27 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  𝐸  ∈  𝐹 ) | 
						
							| 28 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  𝐺  ∈  𝐹 ) | 
						
							| 29 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 30 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 31 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =  𝑄 ) | 
						
							| 32 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  𝑋  =   0  ) | 
						
							| 34 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  𝑌  ∈  𝑉 ) | 
						
							| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25 26 27 28 29 30 31 32 33 34 | lclkrlem2k | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 36 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 37 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 38 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  𝐸  ∈  𝐹 ) | 
						
							| 39 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  𝐺  ∈  𝐹 ) | 
						
							| 40 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 41 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 42 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =  𝑄 ) | 
						
							| 43 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 44 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  𝑋  ∈  𝑉 ) | 
						
							| 45 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  𝑌  =   0  ) | 
						
							| 46 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 36 37 38 39 40 41 42 43 44 45 | lclkrlem2j | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 47 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 48 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 49 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  𝐸  ∈  𝐹 ) | 
						
							| 50 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 51 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 52 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 53 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =  𝑄 ) | 
						
							| 54 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 55 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 56 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  𝑋  ≠   0  ) | 
						
							| 57 |  | eldifsn | ⊢ ( 𝑋  ∈  ( 𝑉  ∖  {  0  } )  ↔  ( 𝑋  ∈  𝑉  ∧  𝑋  ≠   0  ) ) | 
						
							| 58 | 55 56 57 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 59 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 60 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  𝑌  ≠   0  ) | 
						
							| 61 |  | eldifsn | ⊢ ( 𝑌  ∈  ( 𝑉  ∖  {  0  } )  ↔  ( 𝑌  ∈  𝑉  ∧  𝑌  ≠   0  ) ) | 
						
							| 62 | 59 60 61 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 63 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 47 48 49 50 51 52 53 54 58 62 | lclkrlem2i | ⊢ ( ( 𝜑  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 64 | 35 46 63 | pm2.61da2ne | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) |