| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2f.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lclkrlem2f.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lclkrlem2f.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lclkrlem2f.v |
|- V = ( Base ` U ) |
| 5 |
|
lclkrlem2f.s |
|- S = ( Scalar ` U ) |
| 6 |
|
lclkrlem2f.q |
|- Q = ( 0g ` S ) |
| 7 |
|
lclkrlem2f.z |
|- .0. = ( 0g ` U ) |
| 8 |
|
lclkrlem2f.a |
|- .(+) = ( LSSum ` U ) |
| 9 |
|
lclkrlem2f.n |
|- N = ( LSpan ` U ) |
| 10 |
|
lclkrlem2f.f |
|- F = ( LFnl ` U ) |
| 11 |
|
lclkrlem2f.j |
|- J = ( LSHyp ` U ) |
| 12 |
|
lclkrlem2f.l |
|- L = ( LKer ` U ) |
| 13 |
|
lclkrlem2f.d |
|- D = ( LDual ` U ) |
| 14 |
|
lclkrlem2f.p |
|- .+ = ( +g ` D ) |
| 15 |
|
lclkrlem2f.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 16 |
|
lclkrlem2f.b |
|- ( ph -> B e. ( V \ { .0. } ) ) |
| 17 |
|
lclkrlem2f.e |
|- ( ph -> E e. F ) |
| 18 |
|
lclkrlem2f.g |
|- ( ph -> G e. F ) |
| 19 |
|
lclkrlem2f.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
| 20 |
|
lclkrlem2f.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
| 21 |
|
lclkrlem2f.kb |
|- ( ph -> ( ( E .+ G ) ` B ) = Q ) |
| 22 |
|
lclkrlem2f.nx |
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
| 23 |
|
lclkrlem2l.x |
|- ( ph -> X e. V ) |
| 24 |
|
lclkrlem2l.y |
|- ( ph -> Y e. V ) |
| 25 |
15
|
adantr |
|- ( ( ph /\ X = .0. ) -> ( K e. HL /\ W e. H ) ) |
| 26 |
16
|
adantr |
|- ( ( ph /\ X = .0. ) -> B e. ( V \ { .0. } ) ) |
| 27 |
17
|
adantr |
|- ( ( ph /\ X = .0. ) -> E e. F ) |
| 28 |
18
|
adantr |
|- ( ( ph /\ X = .0. ) -> G e. F ) |
| 29 |
19
|
adantr |
|- ( ( ph /\ X = .0. ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
| 30 |
20
|
adantr |
|- ( ( ph /\ X = .0. ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
| 31 |
21
|
adantr |
|- ( ( ph /\ X = .0. ) -> ( ( E .+ G ) ` B ) = Q ) |
| 32 |
22
|
adantr |
|- ( ( ph /\ X = .0. ) -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
| 33 |
|
simpr |
|- ( ( ph /\ X = .0. ) -> X = .0. ) |
| 34 |
24
|
adantr |
|- ( ( ph /\ X = .0. ) -> Y e. V ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 25 26 27 28 29 30 31 32 33 34
|
lclkrlem2k |
|- ( ( ph /\ X = .0. ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
| 36 |
15
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( K e. HL /\ W e. H ) ) |
| 37 |
16
|
adantr |
|- ( ( ph /\ Y = .0. ) -> B e. ( V \ { .0. } ) ) |
| 38 |
17
|
adantr |
|- ( ( ph /\ Y = .0. ) -> E e. F ) |
| 39 |
18
|
adantr |
|- ( ( ph /\ Y = .0. ) -> G e. F ) |
| 40 |
19
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
| 41 |
20
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
| 42 |
21
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( ( E .+ G ) ` B ) = Q ) |
| 43 |
22
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
| 44 |
23
|
adantr |
|- ( ( ph /\ Y = .0. ) -> X e. V ) |
| 45 |
|
simpr |
|- ( ( ph /\ Y = .0. ) -> Y = .0. ) |
| 46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 36 37 38 39 40 41 42 43 44 45
|
lclkrlem2j |
|- ( ( ph /\ Y = .0. ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
| 47 |
15
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( K e. HL /\ W e. H ) ) |
| 48 |
16
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> B e. ( V \ { .0. } ) ) |
| 49 |
17
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> E e. F ) |
| 50 |
18
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> G e. F ) |
| 51 |
19
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
| 52 |
20
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
| 53 |
21
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( ( E .+ G ) ` B ) = Q ) |
| 54 |
22
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
| 55 |
23
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> X e. V ) |
| 56 |
|
simprl |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> X =/= .0. ) |
| 57 |
|
eldifsn |
|- ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) ) |
| 58 |
55 56 57
|
sylanbrc |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> X e. ( V \ { .0. } ) ) |
| 59 |
24
|
adantr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> Y e. V ) |
| 60 |
|
simprr |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> Y =/= .0. ) |
| 61 |
|
eldifsn |
|- ( Y e. ( V \ { .0. } ) <-> ( Y e. V /\ Y =/= .0. ) ) |
| 62 |
59 60 61
|
sylanbrc |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> Y e. ( V \ { .0. } ) ) |
| 63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 47 48 49 50 51 52 53 54 58 62
|
lclkrlem2i |
|- ( ( ph /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
| 64 |
35 46 63
|
pm2.61da2ne |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |