Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem2f.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem2f.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem2f.v |
|- V = ( Base ` U ) |
5 |
|
lclkrlem2f.s |
|- S = ( Scalar ` U ) |
6 |
|
lclkrlem2f.q |
|- Q = ( 0g ` S ) |
7 |
|
lclkrlem2f.z |
|- .0. = ( 0g ` U ) |
8 |
|
lclkrlem2f.a |
|- .(+) = ( LSSum ` U ) |
9 |
|
lclkrlem2f.n |
|- N = ( LSpan ` U ) |
10 |
|
lclkrlem2f.f |
|- F = ( LFnl ` U ) |
11 |
|
lclkrlem2f.j |
|- J = ( LSHyp ` U ) |
12 |
|
lclkrlem2f.l |
|- L = ( LKer ` U ) |
13 |
|
lclkrlem2f.d |
|- D = ( LDual ` U ) |
14 |
|
lclkrlem2f.p |
|- .+ = ( +g ` D ) |
15 |
|
lclkrlem2f.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
lclkrlem2f.b |
|- ( ph -> B e. ( V \ { .0. } ) ) |
17 |
|
lclkrlem2f.e |
|- ( ph -> E e. F ) |
18 |
|
lclkrlem2f.g |
|- ( ph -> G e. F ) |
19 |
|
lclkrlem2f.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
20 |
|
lclkrlem2f.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
21 |
|
lclkrlem2f.kb |
|- ( ph -> ( ( E .+ G ) ` B ) = Q ) |
22 |
|
lclkrlem2f.nx |
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
23 |
|
lclkrlem2k.x |
|- ( ph -> X = .0. ) |
24 |
|
lclkrlem2k.y |
|- ( ph -> Y e. V ) |
25 |
1 3 15
|
dvhlmod |
|- ( ph -> U e. LMod ) |
26 |
10 13 14 25 17 18
|
ldualvaddcom |
|- ( ph -> ( E .+ G ) = ( G .+ E ) ) |
27 |
26
|
fveq1d |
|- ( ph -> ( ( E .+ G ) ` B ) = ( ( G .+ E ) ` B ) ) |
28 |
27 21
|
eqtr3d |
|- ( ph -> ( ( G .+ E ) ` B ) = Q ) |
29 |
22
|
orcomd |
|- ( ph -> ( -. Y e. ( ._|_ ` { B } ) \/ -. X e. ( ._|_ ` { B } ) ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 17 20 19 28 29 24 23
|
lclkrlem2j |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) = ( L ` ( G .+ E ) ) ) |
31 |
26
|
fveq2d |
|- ( ph -> ( L ` ( E .+ G ) ) = ( L ` ( G .+ E ) ) ) |
32 |
31
|
fveq2d |
|- ( ph -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` ( L ` ( G .+ E ) ) ) ) |
33 |
32
|
fveq2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) ) |
34 |
30 33 31
|
3eqtr4d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |