Metamath Proof Explorer


Theorem lclkrlem2k

Description: Lemma for lclkr . Kernel closure when X is zero. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h
|- H = ( LHyp ` K )
lclkrlem2f.o
|- ._|_ = ( ( ocH ` K ) ` W )
lclkrlem2f.u
|- U = ( ( DVecH ` K ) ` W )
lclkrlem2f.v
|- V = ( Base ` U )
lclkrlem2f.s
|- S = ( Scalar ` U )
lclkrlem2f.q
|- Q = ( 0g ` S )
lclkrlem2f.z
|- .0. = ( 0g ` U )
lclkrlem2f.a
|- .(+) = ( LSSum ` U )
lclkrlem2f.n
|- N = ( LSpan ` U )
lclkrlem2f.f
|- F = ( LFnl ` U )
lclkrlem2f.j
|- J = ( LSHyp ` U )
lclkrlem2f.l
|- L = ( LKer ` U )
lclkrlem2f.d
|- D = ( LDual ` U )
lclkrlem2f.p
|- .+ = ( +g ` D )
lclkrlem2f.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lclkrlem2f.b
|- ( ph -> B e. ( V \ { .0. } ) )
lclkrlem2f.e
|- ( ph -> E e. F )
lclkrlem2f.g
|- ( ph -> G e. F )
lclkrlem2f.le
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) )
lclkrlem2f.lg
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) )
lclkrlem2f.kb
|- ( ph -> ( ( E .+ G ) ` B ) = Q )
lclkrlem2f.nx
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) )
lclkrlem2k.x
|- ( ph -> X = .0. )
lclkrlem2k.y
|- ( ph -> Y e. V )
Assertion lclkrlem2k
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) )

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h
 |-  H = ( LHyp ` K )
2 lclkrlem2f.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lclkrlem2f.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lclkrlem2f.v
 |-  V = ( Base ` U )
5 lclkrlem2f.s
 |-  S = ( Scalar ` U )
6 lclkrlem2f.q
 |-  Q = ( 0g ` S )
7 lclkrlem2f.z
 |-  .0. = ( 0g ` U )
8 lclkrlem2f.a
 |-  .(+) = ( LSSum ` U )
9 lclkrlem2f.n
 |-  N = ( LSpan ` U )
10 lclkrlem2f.f
 |-  F = ( LFnl ` U )
11 lclkrlem2f.j
 |-  J = ( LSHyp ` U )
12 lclkrlem2f.l
 |-  L = ( LKer ` U )
13 lclkrlem2f.d
 |-  D = ( LDual ` U )
14 lclkrlem2f.p
 |-  .+ = ( +g ` D )
15 lclkrlem2f.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
16 lclkrlem2f.b
 |-  ( ph -> B e. ( V \ { .0. } ) )
17 lclkrlem2f.e
 |-  ( ph -> E e. F )
18 lclkrlem2f.g
 |-  ( ph -> G e. F )
19 lclkrlem2f.le
 |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) )
20 lclkrlem2f.lg
 |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) )
21 lclkrlem2f.kb
 |-  ( ph -> ( ( E .+ G ) ` B ) = Q )
22 lclkrlem2f.nx
 |-  ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) )
23 lclkrlem2k.x
 |-  ( ph -> X = .0. )
24 lclkrlem2k.y
 |-  ( ph -> Y e. V )
25 1 3 15 dvhlmod
 |-  ( ph -> U e. LMod )
26 10 13 14 25 17 18 ldualvaddcom
 |-  ( ph -> ( E .+ G ) = ( G .+ E ) )
27 26 fveq1d
 |-  ( ph -> ( ( E .+ G ) ` B ) = ( ( G .+ E ) ` B ) )
28 27 21 eqtr3d
 |-  ( ph -> ( ( G .+ E ) ` B ) = Q )
29 22 orcomd
 |-  ( ph -> ( -. Y e. ( ._|_ ` { B } ) \/ -. X e. ( ._|_ ` { B } ) ) )
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 17 20 19 28 29 24 23 lclkrlem2j
 |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) = ( L ` ( G .+ E ) ) )
31 26 fveq2d
 |-  ( ph -> ( L ` ( E .+ G ) ) = ( L ` ( G .+ E ) ) )
32 31 fveq2d
 |-  ( ph -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` ( L ` ( G .+ E ) ) ) )
33 32 fveq2d
 |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) )
34 30 33 31 3eqtr4d
 |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) )