| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2f.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrlem2f.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrlem2f.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2f.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | lclkrlem2f.s |  |-  S = ( Scalar ` U ) | 
						
							| 6 |  | lclkrlem2f.q |  |-  Q = ( 0g ` S ) | 
						
							| 7 |  | lclkrlem2f.z |  |-  .0. = ( 0g ` U ) | 
						
							| 8 |  | lclkrlem2f.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 9 |  | lclkrlem2f.n |  |-  N = ( LSpan ` U ) | 
						
							| 10 |  | lclkrlem2f.f |  |-  F = ( LFnl ` U ) | 
						
							| 11 |  | lclkrlem2f.j |  |-  J = ( LSHyp ` U ) | 
						
							| 12 |  | lclkrlem2f.l |  |-  L = ( LKer ` U ) | 
						
							| 13 |  | lclkrlem2f.d |  |-  D = ( LDual ` U ) | 
						
							| 14 |  | lclkrlem2f.p |  |-  .+ = ( +g ` D ) | 
						
							| 15 |  | lclkrlem2f.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 |  | lclkrlem2f.b |  |-  ( ph -> B e. ( V \ { .0. } ) ) | 
						
							| 17 |  | lclkrlem2f.e |  |-  ( ph -> E e. F ) | 
						
							| 18 |  | lclkrlem2f.g |  |-  ( ph -> G e. F ) | 
						
							| 19 |  | lclkrlem2f.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 20 |  | lclkrlem2f.lg |  |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 21 |  | lclkrlem2f.kb |  |-  ( ph -> ( ( E .+ G ) ` B ) = Q ) | 
						
							| 22 |  | lclkrlem2f.nx |  |-  ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) | 
						
							| 23 |  | lclkrlem2j.x |  |-  ( ph -> X e. V ) | 
						
							| 24 |  | lclkrlem2j.y |  |-  ( ph -> Y = .0. ) | 
						
							| 25 | 23 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 26 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 27 | 1 26 3 4 2 | dochcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V ) -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 28 | 15 25 27 | syl2anc |  |-  ( ph -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 29 | 1 26 2 | dochoc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) | 
						
							| 30 | 15 28 29 | syl2anc |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) | 
						
							| 31 | 24 | sneqd |  |-  ( ph -> { Y } = { .0. } ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ph -> ( ._|_ ` { Y } ) = ( ._|_ ` { .0. } ) ) | 
						
							| 33 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 34 | 1 3 2 33 7 | doch0 |  |-  ( ( K e. HL /\ W e. H ) -> ( ._|_ ` { .0. } ) = ( Base ` U ) ) | 
						
							| 35 | 15 34 | syl |  |-  ( ph -> ( ._|_ ` { .0. } ) = ( Base ` U ) ) | 
						
							| 36 | 20 32 35 | 3eqtrd |  |-  ( ph -> ( L ` G ) = ( Base ` U ) ) | 
						
							| 37 | 1 3 15 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 38 | 5 6 33 10 12 | lkr0f |  |-  ( ( U e. LMod /\ G e. F ) -> ( ( L ` G ) = ( Base ` U ) <-> G = ( ( Base ` U ) X. { Q } ) ) ) | 
						
							| 39 | 37 18 38 | syl2anc |  |-  ( ph -> ( ( L ` G ) = ( Base ` U ) <-> G = ( ( Base ` U ) X. { Q } ) ) ) | 
						
							| 40 | 36 39 | mpbid |  |-  ( ph -> G = ( ( Base ` U ) X. { Q } ) ) | 
						
							| 41 |  | eqid |  |-  ( 0g ` D ) = ( 0g ` D ) | 
						
							| 42 | 33 5 6 13 41 37 | ldual0v |  |-  ( ph -> ( 0g ` D ) = ( ( Base ` U ) X. { Q } ) ) | 
						
							| 43 | 40 42 | eqtr4d |  |-  ( ph -> G = ( 0g ` D ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ph -> ( E .+ G ) = ( E .+ ( 0g ` D ) ) ) | 
						
							| 45 | 13 37 | lduallmod |  |-  ( ph -> D e. LMod ) | 
						
							| 46 |  | eqid |  |-  ( Base ` D ) = ( Base ` D ) | 
						
							| 47 | 10 13 46 37 17 | ldualelvbase |  |-  ( ph -> E e. ( Base ` D ) ) | 
						
							| 48 | 46 14 41 | lmod0vrid |  |-  ( ( D e. LMod /\ E e. ( Base ` D ) ) -> ( E .+ ( 0g ` D ) ) = E ) | 
						
							| 49 | 45 47 48 | syl2anc |  |-  ( ph -> ( E .+ ( 0g ` D ) ) = E ) | 
						
							| 50 | 44 49 | eqtrd |  |-  ( ph -> ( E .+ G ) = E ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ph -> ( L ` ( E .+ G ) ) = ( L ` E ) ) | 
						
							| 52 | 51 19 | eqtr2d |  |-  ( ph -> ( ._|_ ` { X } ) = ( L ` ( E .+ G ) ) ) | 
						
							| 53 | 52 | fveq2d |  |-  ( ph -> ( ._|_ ` ( ._|_ ` { X } ) ) = ( ._|_ ` ( L ` ( E .+ G ) ) ) ) | 
						
							| 54 | 53 | fveq2d |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) ) | 
						
							| 55 | 30 54 52 | 3eqtr3d |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |