Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem2f.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem2f.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem2f.v |
|- V = ( Base ` U ) |
5 |
|
lclkrlem2f.s |
|- S = ( Scalar ` U ) |
6 |
|
lclkrlem2f.q |
|- Q = ( 0g ` S ) |
7 |
|
lclkrlem2f.z |
|- .0. = ( 0g ` U ) |
8 |
|
lclkrlem2f.a |
|- .(+) = ( LSSum ` U ) |
9 |
|
lclkrlem2f.n |
|- N = ( LSpan ` U ) |
10 |
|
lclkrlem2f.f |
|- F = ( LFnl ` U ) |
11 |
|
lclkrlem2f.j |
|- J = ( LSHyp ` U ) |
12 |
|
lclkrlem2f.l |
|- L = ( LKer ` U ) |
13 |
|
lclkrlem2f.d |
|- D = ( LDual ` U ) |
14 |
|
lclkrlem2f.p |
|- .+ = ( +g ` D ) |
15 |
|
lclkrlem2f.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
lclkrlem2f.b |
|- ( ph -> B e. ( V \ { .0. } ) ) |
17 |
|
lclkrlem2f.e |
|- ( ph -> E e. F ) |
18 |
|
lclkrlem2f.g |
|- ( ph -> G e. F ) |
19 |
|
lclkrlem2f.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
20 |
|
lclkrlem2f.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
21 |
|
lclkrlem2f.kb |
|- ( ph -> ( ( E .+ G ) ` B ) = Q ) |
22 |
|
lclkrlem2f.nx |
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
23 |
|
lclkrlem2j.x |
|- ( ph -> X e. V ) |
24 |
|
lclkrlem2j.y |
|- ( ph -> Y = .0. ) |
25 |
23
|
snssd |
|- ( ph -> { X } C_ V ) |
26 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
27 |
1 26 3 4 2
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V ) -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
28 |
15 25 27
|
syl2anc |
|- ( ph -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
29 |
1 26 2
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) |
30 |
15 28 29
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) |
31 |
24
|
sneqd |
|- ( ph -> { Y } = { .0. } ) |
32 |
31
|
fveq2d |
|- ( ph -> ( ._|_ ` { Y } ) = ( ._|_ ` { .0. } ) ) |
33 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
34 |
1 3 2 33 7
|
doch0 |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` { .0. } ) = ( Base ` U ) ) |
35 |
15 34
|
syl |
|- ( ph -> ( ._|_ ` { .0. } ) = ( Base ` U ) ) |
36 |
20 32 35
|
3eqtrd |
|- ( ph -> ( L ` G ) = ( Base ` U ) ) |
37 |
1 3 15
|
dvhlmod |
|- ( ph -> U e. LMod ) |
38 |
5 6 33 10 12
|
lkr0f |
|- ( ( U e. LMod /\ G e. F ) -> ( ( L ` G ) = ( Base ` U ) <-> G = ( ( Base ` U ) X. { Q } ) ) ) |
39 |
37 18 38
|
syl2anc |
|- ( ph -> ( ( L ` G ) = ( Base ` U ) <-> G = ( ( Base ` U ) X. { Q } ) ) ) |
40 |
36 39
|
mpbid |
|- ( ph -> G = ( ( Base ` U ) X. { Q } ) ) |
41 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
42 |
33 5 6 13 41 37
|
ldual0v |
|- ( ph -> ( 0g ` D ) = ( ( Base ` U ) X. { Q } ) ) |
43 |
40 42
|
eqtr4d |
|- ( ph -> G = ( 0g ` D ) ) |
44 |
43
|
oveq2d |
|- ( ph -> ( E .+ G ) = ( E .+ ( 0g ` D ) ) ) |
45 |
13 37
|
lduallmod |
|- ( ph -> D e. LMod ) |
46 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
47 |
10 13 46 37 17
|
ldualelvbase |
|- ( ph -> E e. ( Base ` D ) ) |
48 |
46 14 41
|
lmod0vrid |
|- ( ( D e. LMod /\ E e. ( Base ` D ) ) -> ( E .+ ( 0g ` D ) ) = E ) |
49 |
45 47 48
|
syl2anc |
|- ( ph -> ( E .+ ( 0g ` D ) ) = E ) |
50 |
44 49
|
eqtrd |
|- ( ph -> ( E .+ G ) = E ) |
51 |
50
|
fveq2d |
|- ( ph -> ( L ` ( E .+ G ) ) = ( L ` E ) ) |
52 |
51 19
|
eqtr2d |
|- ( ph -> ( ._|_ ` { X } ) = ( L ` ( E .+ G ) ) ) |
53 |
52
|
fveq2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` { X } ) ) = ( ._|_ ` ( L ` ( E .+ G ) ) ) ) |
54 |
53
|
fveq2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) ) |
55 |
30 54 52
|
3eqtr3d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |