Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrlem2f.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrlem2f.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2f.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lclkrlem2f.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
6 |
|
lclkrlem2f.q |
⊢ 𝑄 = ( 0g ‘ 𝑆 ) |
7 |
|
lclkrlem2f.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
lclkrlem2f.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
lclkrlem2f.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
10 |
|
lclkrlem2f.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
11 |
|
lclkrlem2f.j |
⊢ 𝐽 = ( LSHyp ‘ 𝑈 ) |
12 |
|
lclkrlem2f.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
13 |
|
lclkrlem2f.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
14 |
|
lclkrlem2f.p |
⊢ + = ( +g ‘ 𝐷 ) |
15 |
|
lclkrlem2f.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
lclkrlem2f.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
17 |
|
lclkrlem2f.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
18 |
|
lclkrlem2f.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
19 |
|
lclkrlem2f.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
20 |
|
lclkrlem2f.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
21 |
|
lclkrlem2f.kb |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 𝑄 ) |
22 |
|
lclkrlem2f.nx |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
23 |
|
lclkrlem2j.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
24 |
|
lclkrlem2j.y |
⊢ ( 𝜑 → 𝑌 = 0 ) |
25 |
23
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
26 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
27 |
1 26 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
28 |
15 25 27
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
29 |
1 26 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
30 |
15 28 29
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
31 |
24
|
sneqd |
⊢ ( 𝜑 → { 𝑌 } = { 0 } ) |
32 |
31
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑌 } ) = ( ⊥ ‘ { 0 } ) ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
34 |
1 3 2 33 7
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ { 0 } ) = ( Base ‘ 𝑈 ) ) |
35 |
15 34
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ { 0 } ) = ( Base ‘ 𝑈 ) ) |
36 |
20 32 35
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) ) |
37 |
1 3 15
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
38 |
5 6 33 10 12
|
lkr0f |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) ↔ 𝐺 = ( ( Base ‘ 𝑈 ) × { 𝑄 } ) ) ) |
39 |
37 18 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) = ( Base ‘ 𝑈 ) ↔ 𝐺 = ( ( Base ‘ 𝑈 ) × { 𝑄 } ) ) ) |
40 |
36 39
|
mpbid |
⊢ ( 𝜑 → 𝐺 = ( ( Base ‘ 𝑈 ) × { 𝑄 } ) ) |
41 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
42 |
33 5 6 13 41 37
|
ldual0v |
⊢ ( 𝜑 → ( 0g ‘ 𝐷 ) = ( ( Base ‘ 𝑈 ) × { 𝑄 } ) ) |
43 |
40 42
|
eqtr4d |
⊢ ( 𝜑 → 𝐺 = ( 0g ‘ 𝐷 ) ) |
44 |
43
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) = ( 𝐸 + ( 0g ‘ 𝐷 ) ) ) |
45 |
13 37
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
46 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
47 |
10 13 46 37 17
|
ldualelvbase |
⊢ ( 𝜑 → 𝐸 ∈ ( Base ‘ 𝐷 ) ) |
48 |
46 14 41
|
lmod0vrid |
⊢ ( ( 𝐷 ∈ LMod ∧ 𝐸 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐸 + ( 0g ‘ 𝐷 ) ) = 𝐸 ) |
49 |
45 47 48
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 + ( 0g ‘ 𝐷 ) ) = 𝐸 ) |
50 |
44 49
|
eqtrd |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) = 𝐸 ) |
51 |
50
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = ( 𝐿 ‘ 𝐸 ) ) |
52 |
51 19
|
eqtr2d |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) = ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
54 |
53
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) ) |
55 |
30 54 52
|
3eqtr3d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |