| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2f.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrlem2f.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrlem2f.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2f.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | lclkrlem2f.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2f.q | ⊢ 𝑄  =  ( 0g ‘ 𝑆 ) | 
						
							| 7 |  | lclkrlem2f.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2f.a | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2f.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 10 |  | lclkrlem2f.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 11 |  | lclkrlem2f.j | ⊢ 𝐽  =  ( LSHyp ‘ 𝑈 ) | 
						
							| 12 |  | lclkrlem2f.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 13 |  | lclkrlem2f.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 14 |  | lclkrlem2f.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 15 |  | lclkrlem2f.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | lclkrlem2f.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 17 |  | lclkrlem2f.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 18 |  | lclkrlem2f.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 19 |  | lclkrlem2f.le | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 20 |  | lclkrlem2f.lg | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 21 |  | lclkrlem2f.kb | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =  𝑄 ) | 
						
							| 22 |  | lclkrlem2f.nx | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 23 |  | lclkrlem2j.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 24 |  | lclkrlem2j.y | ⊢ ( 𝜑  →  𝑌  =   0  ) | 
						
							| 25 | 23 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑉 ) | 
						
							| 26 |  | eqid | ⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 27 | 1 26 3 4 2 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝑋 }  ⊆  𝑉 )  →  (  ⊥  ‘ { 𝑋 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 28 | 15 25 27 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑋 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 29 | 1 26 2 | dochoc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ { 𝑋 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )  →  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ { 𝑋 } ) ) )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 30 | 15 28 29 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ { 𝑋 } ) ) )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 31 | 24 | sneqd | ⊢ ( 𝜑  →  { 𝑌 }  =  {  0  } ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑌 } )  =  (  ⊥  ‘ {  0  } ) ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 34 | 1 3 2 33 7 | doch0 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  (  ⊥  ‘ {  0  } )  =  ( Base ‘ 𝑈 ) ) | 
						
							| 35 | 15 34 | syl | ⊢ ( 𝜑  →  (  ⊥  ‘ {  0  } )  =  ( Base ‘ 𝑈 ) ) | 
						
							| 36 | 20 32 35 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  =  ( Base ‘ 𝑈 ) ) | 
						
							| 37 | 1 3 15 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 38 | 5 6 33 10 12 | lkr0f | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐺  ∈  𝐹 )  →  ( ( 𝐿 ‘ 𝐺 )  =  ( Base ‘ 𝑈 )  ↔  𝐺  =  ( ( Base ‘ 𝑈 )  ×  { 𝑄 } ) ) ) | 
						
							| 39 | 37 18 38 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ 𝐺 )  =  ( Base ‘ 𝑈 )  ↔  𝐺  =  ( ( Base ‘ 𝑈 )  ×  { 𝑄 } ) ) ) | 
						
							| 40 | 36 39 | mpbid | ⊢ ( 𝜑  →  𝐺  =  ( ( Base ‘ 𝑈 )  ×  { 𝑄 } ) ) | 
						
							| 41 |  | eqid | ⊢ ( 0g ‘ 𝐷 )  =  ( 0g ‘ 𝐷 ) | 
						
							| 42 | 33 5 6 13 41 37 | ldual0v | ⊢ ( 𝜑  →  ( 0g ‘ 𝐷 )  =  ( ( Base ‘ 𝑈 )  ×  { 𝑄 } ) ) | 
						
							| 43 | 40 42 | eqtr4d | ⊢ ( 𝜑  →  𝐺  =  ( 0g ‘ 𝐷 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  =  ( 𝐸  +  ( 0g ‘ 𝐷 ) ) ) | 
						
							| 45 | 13 37 | lduallmod | ⊢ ( 𝜑  →  𝐷  ∈  LMod ) | 
						
							| 46 |  | eqid | ⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 ) | 
						
							| 47 | 10 13 46 37 17 | ldualelvbase | ⊢ ( 𝜑  →  𝐸  ∈  ( Base ‘ 𝐷 ) ) | 
						
							| 48 | 46 14 41 | lmod0vrid | ⊢ ( ( 𝐷  ∈  LMod  ∧  𝐸  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝐸  +  ( 0g ‘ 𝐷 ) )  =  𝐸 ) | 
						
							| 49 | 45 47 48 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸  +  ( 0g ‘ 𝐷 ) )  =  𝐸 ) | 
						
							| 50 | 44 49 | eqtrd | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  =  𝐸 ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  =  ( 𝐿 ‘ 𝐸 ) ) | 
						
							| 52 | 51 19 | eqtr2d | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑋 } )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ { 𝑋 } ) )  =  (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ { 𝑋 } ) ) )  =  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) ) | 
						
							| 55 | 30 54 52 | 3eqtr3d | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) |