Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrlem2f.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrlem2f.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2f.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lclkrlem2f.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
6 |
|
lclkrlem2f.q |
⊢ 𝑄 = ( 0g ‘ 𝑆 ) |
7 |
|
lclkrlem2f.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
lclkrlem2f.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
lclkrlem2f.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
10 |
|
lclkrlem2f.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
11 |
|
lclkrlem2f.j |
⊢ 𝐽 = ( LSHyp ‘ 𝑈 ) |
12 |
|
lclkrlem2f.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
13 |
|
lclkrlem2f.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
14 |
|
lclkrlem2f.p |
⊢ + = ( +g ‘ 𝐷 ) |
15 |
|
lclkrlem2f.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
lclkrlem2f.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
17 |
|
lclkrlem2f.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
18 |
|
lclkrlem2f.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
19 |
|
lclkrlem2f.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
20 |
|
lclkrlem2f.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
21 |
|
lclkrlem2f.kb |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 𝑄 ) |
22 |
|
lclkrlem2f.nx |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
23 |
|
lclkrlem2k.x |
⊢ ( 𝜑 → 𝑋 = 0 ) |
24 |
|
lclkrlem2k.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
25 |
1 3 15
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
26 |
10 13 14 25 17 18
|
ldualvaddcom |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) = ( 𝐺 + 𝐸 ) ) |
27 |
26
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = ( ( 𝐺 + 𝐸 ) ‘ 𝐵 ) ) |
28 |
27 21
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐺 + 𝐸 ) ‘ 𝐵 ) = 𝑄 ) |
29 |
22
|
orcomd |
⊢ ( 𝜑 → ( ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 17 20 19 28 29 24 23
|
lclkrlem2j |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) ) ) = ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) ) |
31 |
26
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) = ( ⊥ ‘ ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) ) ) |
33 |
32
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) ) ) ) |
34 |
30 33 31
|
3eqtr4d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |