Metamath Proof Explorer


Theorem lclkrlem2k

Description: Lemma for lclkr . Kernel closure when X is zero. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkrlem2f.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2f.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2f.v 𝑉 = ( Base ‘ 𝑈 )
lclkrlem2f.s 𝑆 = ( Scalar ‘ 𝑈 )
lclkrlem2f.q 𝑄 = ( 0g𝑆 )
lclkrlem2f.z 0 = ( 0g𝑈 )
lclkrlem2f.a = ( LSSum ‘ 𝑈 )
lclkrlem2f.n 𝑁 = ( LSpan ‘ 𝑈 )
lclkrlem2f.f 𝐹 = ( LFnl ‘ 𝑈 )
lclkrlem2f.j 𝐽 = ( LSHyp ‘ 𝑈 )
lclkrlem2f.l 𝐿 = ( LKer ‘ 𝑈 )
lclkrlem2f.d 𝐷 = ( LDual ‘ 𝑈 )
lclkrlem2f.p + = ( +g𝐷 )
lclkrlem2f.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lclkrlem2f.b ( 𝜑𝐵 ∈ ( 𝑉 ∖ { 0 } ) )
lclkrlem2f.e ( 𝜑𝐸𝐹 )
lclkrlem2f.g ( 𝜑𝐺𝐹 )
lclkrlem2f.le ( 𝜑 → ( 𝐿𝐸 ) = ( ‘ { 𝑋 } ) )
lclkrlem2f.lg ( 𝜑 → ( 𝐿𝐺 ) = ( ‘ { 𝑌 } ) )
lclkrlem2f.kb ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 𝑄 )
lclkrlem2f.nx ( 𝜑 → ( ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ‘ { 𝐵 } ) ) )
lclkrlem2k.x ( 𝜑𝑋 = 0 )
lclkrlem2k.y ( 𝜑𝑌𝑉 )
Assertion lclkrlem2k ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lclkrlem2f.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lclkrlem2f.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lclkrlem2f.v 𝑉 = ( Base ‘ 𝑈 )
5 lclkrlem2f.s 𝑆 = ( Scalar ‘ 𝑈 )
6 lclkrlem2f.q 𝑄 = ( 0g𝑆 )
7 lclkrlem2f.z 0 = ( 0g𝑈 )
8 lclkrlem2f.a = ( LSSum ‘ 𝑈 )
9 lclkrlem2f.n 𝑁 = ( LSpan ‘ 𝑈 )
10 lclkrlem2f.f 𝐹 = ( LFnl ‘ 𝑈 )
11 lclkrlem2f.j 𝐽 = ( LSHyp ‘ 𝑈 )
12 lclkrlem2f.l 𝐿 = ( LKer ‘ 𝑈 )
13 lclkrlem2f.d 𝐷 = ( LDual ‘ 𝑈 )
14 lclkrlem2f.p + = ( +g𝐷 )
15 lclkrlem2f.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
16 lclkrlem2f.b ( 𝜑𝐵 ∈ ( 𝑉 ∖ { 0 } ) )
17 lclkrlem2f.e ( 𝜑𝐸𝐹 )
18 lclkrlem2f.g ( 𝜑𝐺𝐹 )
19 lclkrlem2f.le ( 𝜑 → ( 𝐿𝐸 ) = ( ‘ { 𝑋 } ) )
20 lclkrlem2f.lg ( 𝜑 → ( 𝐿𝐺 ) = ( ‘ { 𝑌 } ) )
21 lclkrlem2f.kb ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 𝑄 )
22 lclkrlem2f.nx ( 𝜑 → ( ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ‘ { 𝐵 } ) ) )
23 lclkrlem2k.x ( 𝜑𝑋 = 0 )
24 lclkrlem2k.y ( 𝜑𝑌𝑉 )
25 1 3 15 dvhlmod ( 𝜑𝑈 ∈ LMod )
26 10 13 14 25 17 18 ldualvaddcom ( 𝜑 → ( 𝐸 + 𝐺 ) = ( 𝐺 + 𝐸 ) )
27 26 fveq1d ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = ( ( 𝐺 + 𝐸 ) ‘ 𝐵 ) )
28 27 21 eqtr3d ( 𝜑 → ( ( 𝐺 + 𝐸 ) ‘ 𝐵 ) = 𝑄 )
29 22 orcomd ( 𝜑 → ( ¬ 𝑌 ∈ ( ‘ { 𝐵 } ) ∨ ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) ) )
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 17 20 19 28 29 24 23 lclkrlem2j ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) ) ) = ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) )
31 26 fveq2d ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) )
32 31 fveq2d ( 𝜑 → ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) = ( ‘ ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) ) )
33 32 fveq2d ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐺 + 𝐸 ) ) ) ) )
34 30 33 31 3eqtr4d ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )