Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem2f.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem2f.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem2f.v |
|- V = ( Base ` U ) |
5 |
|
lclkrlem2f.s |
|- S = ( Scalar ` U ) |
6 |
|
lclkrlem2f.q |
|- Q = ( 0g ` S ) |
7 |
|
lclkrlem2f.z |
|- .0. = ( 0g ` U ) |
8 |
|
lclkrlem2f.a |
|- .(+) = ( LSSum ` U ) |
9 |
|
lclkrlem2f.n |
|- N = ( LSpan ` U ) |
10 |
|
lclkrlem2f.f |
|- F = ( LFnl ` U ) |
11 |
|
lclkrlem2f.j |
|- J = ( LSHyp ` U ) |
12 |
|
lclkrlem2f.l |
|- L = ( LKer ` U ) |
13 |
|
lclkrlem2f.d |
|- D = ( LDual ` U ) |
14 |
|
lclkrlem2f.p |
|- .+ = ( +g ` D ) |
15 |
|
lclkrlem2f.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
lclkrlem2f.b |
|- ( ph -> B e. ( V \ { .0. } ) ) |
17 |
|
lclkrlem2f.e |
|- ( ph -> E e. F ) |
18 |
|
lclkrlem2f.g |
|- ( ph -> G e. F ) |
19 |
|
lclkrlem2f.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
20 |
|
lclkrlem2f.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
21 |
|
lclkrlem2f.kb |
|- ( ph -> ( ( E .+ G ) ` B ) = Q ) |
22 |
|
lclkrlem2f.nx |
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
23 |
|
lclkrlem2i.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
24 |
|
lclkrlem2i.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
25 |
15
|
adantr |
|- ( ( ph /\ ( L ` E ) = ( L ` G ) ) -> ( K e. HL /\ W e. H ) ) |
26 |
23
|
adantr |
|- ( ( ph /\ ( L ` E ) = ( L ` G ) ) -> X e. ( V \ { .0. } ) ) |
27 |
17
|
adantr |
|- ( ( ph /\ ( L ` E ) = ( L ` G ) ) -> E e. F ) |
28 |
18
|
adantr |
|- ( ( ph /\ ( L ` E ) = ( L ` G ) ) -> G e. F ) |
29 |
19
|
adantr |
|- ( ( ph /\ ( L ` E ) = ( L ` G ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
30 |
|
simpr |
|- ( ( ph /\ ( L ` E ) = ( L ` G ) ) -> ( L ` E ) = ( L ` G ) ) |
31 |
1 2 3 4 7 10 12 13 14 25 26 27 28 29 30
|
lclkrlem2e |
|- ( ( ph /\ ( L ` E ) = ( L ` G ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
32 |
15
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> ( K e. HL /\ W e. H ) ) |
33 |
16
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> B e. ( V \ { .0. } ) ) |
34 |
17
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> E e. F ) |
35 |
18
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> G e. F ) |
36 |
19
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
37 |
20
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
38 |
21
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> ( ( E .+ G ) ` B ) = Q ) |
39 |
22
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
40 |
23
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> X e. ( V \ { .0. } ) ) |
41 |
24
|
adantr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> Y e. ( V \ { .0. } ) ) |
42 |
|
simpr |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> ( L ` E ) =/= ( L ` G ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 32 33 34 35 36 37 38 39 40 41 42
|
lclkrlem2h |
|- ( ( ph /\ ( L ` E ) =/= ( L ` G ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
44 |
31 43
|
pm2.61dane |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |