| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2f.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrlem2f.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrlem2f.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2f.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | lclkrlem2f.s |  |-  S = ( Scalar ` U ) | 
						
							| 6 |  | lclkrlem2f.q |  |-  Q = ( 0g ` S ) | 
						
							| 7 |  | lclkrlem2f.z |  |-  .0. = ( 0g ` U ) | 
						
							| 8 |  | lclkrlem2f.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 9 |  | lclkrlem2f.n |  |-  N = ( LSpan ` U ) | 
						
							| 10 |  | lclkrlem2f.f |  |-  F = ( LFnl ` U ) | 
						
							| 11 |  | lclkrlem2f.j |  |-  J = ( LSHyp ` U ) | 
						
							| 12 |  | lclkrlem2f.l |  |-  L = ( LKer ` U ) | 
						
							| 13 |  | lclkrlem2f.d |  |-  D = ( LDual ` U ) | 
						
							| 14 |  | lclkrlem2f.p |  |-  .+ = ( +g ` D ) | 
						
							| 15 |  | lclkrlem2f.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 |  | lclkrlem2f.b |  |-  ( ph -> B e. ( V \ { .0. } ) ) | 
						
							| 17 |  | lclkrlem2f.e |  |-  ( ph -> E e. F ) | 
						
							| 18 |  | lclkrlem2f.g |  |-  ( ph -> G e. F ) | 
						
							| 19 |  | lclkrlem2f.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 20 |  | lclkrlem2f.lg |  |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 21 |  | lclkrlem2f.kb |  |-  ( ph -> ( ( E .+ G ) ` B ) = Q ) | 
						
							| 22 |  | lclkrlem2f.nx |  |-  ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) | 
						
							| 23 |  | lclkrlem2h.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 24 |  | lclkrlem2h.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 25 |  | lclkrlem2h.ne |  |-  ( ph -> ( L ` E ) =/= ( L ` G ) ) | 
						
							| 26 | 15 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 27 | 16 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> B e. ( V \ { .0. } ) ) | 
						
							| 28 | 17 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> E e. F ) | 
						
							| 29 | 18 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> G e. F ) | 
						
							| 30 | 19 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 31 | 20 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 32 | 21 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( ( E .+ G ) ` B ) = Q ) | 
						
							| 33 | 22 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) | 
						
							| 34 | 23 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> X e. ( V \ { .0. } ) ) | 
						
							| 35 | 24 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 36 | 25 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( L ` E ) =/= ( L ` G ) ) | 
						
							| 37 |  | simpr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( L ` ( E .+ G ) ) e. J ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 27 28 29 30 31 32 33 34 35 36 37 | lclkrlem2g |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 39 | 1 3 2 4 15 | dochoc1 |  |-  ( ph -> ( ._|_ ` ( ._|_ ` V ) ) = V ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( ._|_ ` V ) ) = V ) | 
						
							| 41 | 1 3 15 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 42 | 1 3 15 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 43 | 10 13 14 42 17 18 | ldualvaddcl |  |-  ( ph -> ( E .+ G ) e. F ) | 
						
							| 44 | 4 11 10 12 41 43 | lkrshpor |  |-  ( ph -> ( ( L ` ( E .+ G ) ) e. J \/ ( L ` ( E .+ G ) ) = V ) ) | 
						
							| 45 | 44 | orcanai |  |-  ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( L ` ( E .+ G ) ) = V ) | 
						
							| 46 | 45 | fveq2d |  |-  ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` V ) ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) | 
						
							| 48 | 40 47 45 | 3eqtr4d |  |-  ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 49 | 38 48 | pm2.61dan |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |