Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem2f.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem2f.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem2f.v |
|- V = ( Base ` U ) |
5 |
|
lclkrlem2f.s |
|- S = ( Scalar ` U ) |
6 |
|
lclkrlem2f.q |
|- Q = ( 0g ` S ) |
7 |
|
lclkrlem2f.z |
|- .0. = ( 0g ` U ) |
8 |
|
lclkrlem2f.a |
|- .(+) = ( LSSum ` U ) |
9 |
|
lclkrlem2f.n |
|- N = ( LSpan ` U ) |
10 |
|
lclkrlem2f.f |
|- F = ( LFnl ` U ) |
11 |
|
lclkrlem2f.j |
|- J = ( LSHyp ` U ) |
12 |
|
lclkrlem2f.l |
|- L = ( LKer ` U ) |
13 |
|
lclkrlem2f.d |
|- D = ( LDual ` U ) |
14 |
|
lclkrlem2f.p |
|- .+ = ( +g ` D ) |
15 |
|
lclkrlem2f.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
lclkrlem2f.b |
|- ( ph -> B e. ( V \ { .0. } ) ) |
17 |
|
lclkrlem2f.e |
|- ( ph -> E e. F ) |
18 |
|
lclkrlem2f.g |
|- ( ph -> G e. F ) |
19 |
|
lclkrlem2f.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
20 |
|
lclkrlem2f.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
21 |
|
lclkrlem2f.kb |
|- ( ph -> ( ( E .+ G ) ` B ) = Q ) |
22 |
|
lclkrlem2f.nx |
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
23 |
|
lclkrlem2h.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
24 |
|
lclkrlem2h.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
25 |
|
lclkrlem2h.ne |
|- ( ph -> ( L ` E ) =/= ( L ` G ) ) |
26 |
15
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( K e. HL /\ W e. H ) ) |
27 |
16
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> B e. ( V \ { .0. } ) ) |
28 |
17
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> E e. F ) |
29 |
18
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> G e. F ) |
30 |
19
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
31 |
20
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
32 |
21
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( ( E .+ G ) ` B ) = Q ) |
33 |
22
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
34 |
23
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> X e. ( V \ { .0. } ) ) |
35 |
24
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> Y e. ( V \ { .0. } ) ) |
36 |
25
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( L ` E ) =/= ( L ` G ) ) |
37 |
|
simpr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( L ` ( E .+ G ) ) e. J ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 27 28 29 30 31 32 33 34 35 36 37
|
lclkrlem2g |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
39 |
1 3 2 4 15
|
dochoc1 |
|- ( ph -> ( ._|_ ` ( ._|_ ` V ) ) = V ) |
40 |
39
|
adantr |
|- ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( ._|_ ` V ) ) = V ) |
41 |
1 3 15
|
dvhlvec |
|- ( ph -> U e. LVec ) |
42 |
1 3 15
|
dvhlmod |
|- ( ph -> U e. LMod ) |
43 |
10 13 14 42 17 18
|
ldualvaddcl |
|- ( ph -> ( E .+ G ) e. F ) |
44 |
4 11 10 12 41 43
|
lkrshpor |
|- ( ph -> ( ( L ` ( E .+ G ) ) e. J \/ ( L ` ( E .+ G ) ) = V ) ) |
45 |
44
|
orcanai |
|- ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( L ` ( E .+ G ) ) = V ) |
46 |
45
|
fveq2d |
|- ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` V ) ) |
47 |
46
|
fveq2d |
|- ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) |
48 |
40 47 45
|
3eqtr4d |
|- ( ( ph /\ -. ( L ` ( E .+ G ) ) e. J ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
49 |
38 48
|
pm2.61dan |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |