Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem2f.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem2f.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem2f.v |
|- V = ( Base ` U ) |
5 |
|
lclkrlem2f.s |
|- S = ( Scalar ` U ) |
6 |
|
lclkrlem2f.q |
|- Q = ( 0g ` S ) |
7 |
|
lclkrlem2f.z |
|- .0. = ( 0g ` U ) |
8 |
|
lclkrlem2f.a |
|- .(+) = ( LSSum ` U ) |
9 |
|
lclkrlem2f.n |
|- N = ( LSpan ` U ) |
10 |
|
lclkrlem2f.f |
|- F = ( LFnl ` U ) |
11 |
|
lclkrlem2f.j |
|- J = ( LSHyp ` U ) |
12 |
|
lclkrlem2f.l |
|- L = ( LKer ` U ) |
13 |
|
lclkrlem2f.d |
|- D = ( LDual ` U ) |
14 |
|
lclkrlem2f.p |
|- .+ = ( +g ` D ) |
15 |
|
lclkrlem2f.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
lclkrlem2f.b |
|- ( ph -> B e. ( V \ { .0. } ) ) |
17 |
|
lclkrlem2f.e |
|- ( ph -> E e. F ) |
18 |
|
lclkrlem2f.g |
|- ( ph -> G e. F ) |
19 |
|
lclkrlem2f.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
20 |
|
lclkrlem2f.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
21 |
|
lclkrlem2f.kb |
|- ( ph -> ( ( E .+ G ) ` B ) = Q ) |
22 |
|
lclkrlem2f.nx |
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
23 |
|
lclkrlem2f.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
24 |
|
lclkrlem2f.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
25 |
|
lclkrlem2f.ne |
|- ( ph -> ( L ` E ) =/= ( L ` G ) ) |
26 |
|
lclkrlem2f.lp |
|- ( ph -> ( L ` ( E .+ G ) ) e. J ) |
27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
lclkrlem2f |
|- ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) ) |
28 |
1 3 15
|
dvhlvec |
|- ( ph -> U e. LVec ) |
29 |
19 20
|
ineq12d |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) |
30 |
29
|
oveq1d |
|- ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) = ( ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) .(+) ( N ` { B } ) ) ) |
31 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
32 |
25 19 20
|
3netr3d |
|- ( ph -> ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) ) |
33 |
1 2 3 4 7 8 9 31 15 16 23 24 32 22 11
|
lclkrlem2c |
|- ( ph -> ( ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) .(+) ( N ` { B } ) ) e. J ) |
34 |
30 33
|
eqeltrd |
|- ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) e. J ) |
35 |
11 28 34 26
|
lshpcmp |
|- ( ph -> ( ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) <-> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) = ( L ` ( E .+ G ) ) ) ) |
36 |
27 35
|
mpbid |
|- ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) = ( L ` ( E .+ G ) ) ) |
37 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
38 |
1 2 3 4 7 8 9 31 15 16 23 24 32 22 37
|
lclkrlem2d |
|- ( ph -> ( ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) .(+) ( N ` { B } ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
39 |
30 38
|
eqeltrd |
|- ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
40 |
36 39
|
eqeltrrd |
|- ( ph -> ( L ` ( E .+ G ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
41 |
1 3 37 4
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` ( E .+ G ) ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( L ` ( E .+ G ) ) C_ V ) |
42 |
15 40 41
|
syl2anc |
|- ( ph -> ( L ` ( E .+ G ) ) C_ V ) |
43 |
1 37 3 4 2 15 42
|
dochoccl |
|- ( ph -> ( ( L ` ( E .+ G ) ) e. ran ( ( DIsoH ` K ) ` W ) <-> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) ) |
44 |
40 43
|
mpbid |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |