| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2f.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrlem2f.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrlem2f.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2f.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | lclkrlem2f.s |  |-  S = ( Scalar ` U ) | 
						
							| 6 |  | lclkrlem2f.q |  |-  Q = ( 0g ` S ) | 
						
							| 7 |  | lclkrlem2f.z |  |-  .0. = ( 0g ` U ) | 
						
							| 8 |  | lclkrlem2f.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 9 |  | lclkrlem2f.n |  |-  N = ( LSpan ` U ) | 
						
							| 10 |  | lclkrlem2f.f |  |-  F = ( LFnl ` U ) | 
						
							| 11 |  | lclkrlem2f.j |  |-  J = ( LSHyp ` U ) | 
						
							| 12 |  | lclkrlem2f.l |  |-  L = ( LKer ` U ) | 
						
							| 13 |  | lclkrlem2f.d |  |-  D = ( LDual ` U ) | 
						
							| 14 |  | lclkrlem2f.p |  |-  .+ = ( +g ` D ) | 
						
							| 15 |  | lclkrlem2f.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 |  | lclkrlem2f.b |  |-  ( ph -> B e. ( V \ { .0. } ) ) | 
						
							| 17 |  | lclkrlem2f.e |  |-  ( ph -> E e. F ) | 
						
							| 18 |  | lclkrlem2f.g |  |-  ( ph -> G e. F ) | 
						
							| 19 |  | lclkrlem2f.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 20 |  | lclkrlem2f.lg |  |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 21 |  | lclkrlem2f.kb |  |-  ( ph -> ( ( E .+ G ) ` B ) = Q ) | 
						
							| 22 |  | lclkrlem2f.nx |  |-  ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) | 
						
							| 23 |  | lclkrlem2f.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 24 |  | lclkrlem2f.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 25 |  | lclkrlem2f.ne |  |-  ( ph -> ( L ` E ) =/= ( L ` G ) ) | 
						
							| 26 |  | lclkrlem2f.lp |  |-  ( ph -> ( L ` ( E .+ G ) ) e. J ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | lclkrlem2f |  |-  ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 28 | 1 3 15 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 29 | 19 20 | ineq12d |  |-  ( ph -> ( ( L ` E ) i^i ( L ` G ) ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) = ( ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) .(+) ( N ` { B } ) ) ) | 
						
							| 31 |  | eqid |  |-  ( LSAtoms ` U ) = ( LSAtoms ` U ) | 
						
							| 32 | 25 19 20 | 3netr3d |  |-  ( ph -> ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) ) | 
						
							| 33 | 1 2 3 4 7 8 9 31 15 16 23 24 32 22 11 | lclkrlem2c |  |-  ( ph -> ( ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) .(+) ( N ` { B } ) ) e. J ) | 
						
							| 34 | 30 33 | eqeltrd |  |-  ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) e. J ) | 
						
							| 35 | 11 28 34 26 | lshpcmp |  |-  ( ph -> ( ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) <-> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) = ( L ` ( E .+ G ) ) ) ) | 
						
							| 36 | 27 35 | mpbid |  |-  ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 37 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 38 | 1 2 3 4 7 8 9 31 15 16 23 24 32 22 37 | lclkrlem2d |  |-  ( ph -> ( ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) .(+) ( N ` { B } ) ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 39 | 30 38 | eqeltrd |  |-  ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 40 | 36 39 | eqeltrrd |  |-  ( ph -> ( L ` ( E .+ G ) ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 41 | 1 3 37 4 | dihrnss |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( L ` ( E .+ G ) ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( L ` ( E .+ G ) ) C_ V ) | 
						
							| 42 | 15 40 41 | syl2anc |  |-  ( ph -> ( L ` ( E .+ G ) ) C_ V ) | 
						
							| 43 | 1 37 3 4 2 15 42 | dochoccl |  |-  ( ph -> ( ( L ` ( E .+ G ) ) e. ran ( ( DIsoH ` K ) ` W ) <-> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) ) | 
						
							| 44 | 40 43 | mpbid |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |