Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem2f.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem2f.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem2f.v |
|- V = ( Base ` U ) |
5 |
|
lclkrlem2f.s |
|- S = ( Scalar ` U ) |
6 |
|
lclkrlem2f.q |
|- Q = ( 0g ` S ) |
7 |
|
lclkrlem2f.z |
|- .0. = ( 0g ` U ) |
8 |
|
lclkrlem2f.a |
|- .(+) = ( LSSum ` U ) |
9 |
|
lclkrlem2f.n |
|- N = ( LSpan ` U ) |
10 |
|
lclkrlem2f.f |
|- F = ( LFnl ` U ) |
11 |
|
lclkrlem2f.j |
|- J = ( LSHyp ` U ) |
12 |
|
lclkrlem2f.l |
|- L = ( LKer ` U ) |
13 |
|
lclkrlem2f.d |
|- D = ( LDual ` U ) |
14 |
|
lclkrlem2f.p |
|- .+ = ( +g ` D ) |
15 |
|
lclkrlem2f.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
lclkrlem2f.b |
|- ( ph -> B e. ( V \ { .0. } ) ) |
17 |
|
lclkrlem2f.e |
|- ( ph -> E e. F ) |
18 |
|
lclkrlem2f.g |
|- ( ph -> G e. F ) |
19 |
|
lclkrlem2f.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
20 |
|
lclkrlem2f.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
21 |
|
lclkrlem2f.kb |
|- ( ph -> ( ( E .+ G ) ` B ) = Q ) |
22 |
|
lclkrlem2f.nx |
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
23 |
|
lclkrlem2f.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
24 |
|
lclkrlem2f.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
25 |
|
lclkrlem2f.ne |
|- ( ph -> ( L ` E ) =/= ( L ` G ) ) |
26 |
|
lclkrlem2f.lp |
|- ( ph -> ( L ` ( E .+ G ) ) e. J ) |
27 |
1 3 15
|
dvhlmod |
|- ( ph -> U e. LMod ) |
28 |
10 12 13 14 27 17 18
|
lkrin |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) |
29 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
30 |
29 11 27 26
|
lshplss |
|- ( ph -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) ) |
31 |
10 13 14 27 17 18
|
ldualvaddcl |
|- ( ph -> ( E .+ G ) e. F ) |
32 |
16
|
eldifad |
|- ( ph -> B e. V ) |
33 |
4 5 6 10 12 27 31 32
|
ellkr2 |
|- ( ph -> ( B e. ( L ` ( E .+ G ) ) <-> ( ( E .+ G ) ` B ) = Q ) ) |
34 |
21 33
|
mpbird |
|- ( ph -> B e. ( L ` ( E .+ G ) ) ) |
35 |
29 9 27 30 34
|
lspsnel5a |
|- ( ph -> ( N ` { B } ) C_ ( L ` ( E .+ G ) ) ) |
36 |
29
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
37 |
27 36
|
syl |
|- ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
38 |
10 12 29
|
lkrlss |
|- ( ( U e. LMod /\ E e. F ) -> ( L ` E ) e. ( LSubSp ` U ) ) |
39 |
27 17 38
|
syl2anc |
|- ( ph -> ( L ` E ) e. ( LSubSp ` U ) ) |
40 |
10 12 29
|
lkrlss |
|- ( ( U e. LMod /\ G e. F ) -> ( L ` G ) e. ( LSubSp ` U ) ) |
41 |
27 18 40
|
syl2anc |
|- ( ph -> ( L ` G ) e. ( LSubSp ` U ) ) |
42 |
29
|
lssincl |
|- ( ( U e. LMod /\ ( L ` E ) e. ( LSubSp ` U ) /\ ( L ` G ) e. ( LSubSp ` U ) ) -> ( ( L ` E ) i^i ( L ` G ) ) e. ( LSubSp ` U ) ) |
43 |
27 39 41 42
|
syl3anc |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) e. ( LSubSp ` U ) ) |
44 |
37 43
|
sseldd |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) e. ( SubGrp ` U ) ) |
45 |
4 29 9
|
lspsncl |
|- ( ( U e. LMod /\ B e. V ) -> ( N ` { B } ) e. ( LSubSp ` U ) ) |
46 |
27 32 45
|
syl2anc |
|- ( ph -> ( N ` { B } ) e. ( LSubSp ` U ) ) |
47 |
37 46
|
sseldd |
|- ( ph -> ( N ` { B } ) e. ( SubGrp ` U ) ) |
48 |
37 30
|
sseldd |
|- ( ph -> ( L ` ( E .+ G ) ) e. ( SubGrp ` U ) ) |
49 |
8
|
lsmlub |
|- ( ( ( ( L ` E ) i^i ( L ` G ) ) e. ( SubGrp ` U ) /\ ( N ` { B } ) e. ( SubGrp ` U ) /\ ( L ` ( E .+ G ) ) e. ( SubGrp ` U ) ) -> ( ( ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) /\ ( N ` { B } ) C_ ( L ` ( E .+ G ) ) ) <-> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) ) ) |
50 |
44 47 48 49
|
syl3anc |
|- ( ph -> ( ( ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) /\ ( N ` { B } ) C_ ( L ` ( E .+ G ) ) ) <-> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) ) ) |
51 |
28 35 50
|
mpbi2and |
|- ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) ) |