| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2f.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrlem2f.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrlem2f.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2f.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | lclkrlem2f.s |  |-  S = ( Scalar ` U ) | 
						
							| 6 |  | lclkrlem2f.q |  |-  Q = ( 0g ` S ) | 
						
							| 7 |  | lclkrlem2f.z |  |-  .0. = ( 0g ` U ) | 
						
							| 8 |  | lclkrlem2f.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 9 |  | lclkrlem2f.n |  |-  N = ( LSpan ` U ) | 
						
							| 10 |  | lclkrlem2f.f |  |-  F = ( LFnl ` U ) | 
						
							| 11 |  | lclkrlem2f.j |  |-  J = ( LSHyp ` U ) | 
						
							| 12 |  | lclkrlem2f.l |  |-  L = ( LKer ` U ) | 
						
							| 13 |  | lclkrlem2f.d |  |-  D = ( LDual ` U ) | 
						
							| 14 |  | lclkrlem2f.p |  |-  .+ = ( +g ` D ) | 
						
							| 15 |  | lclkrlem2f.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 |  | lclkrlem2f.b |  |-  ( ph -> B e. ( V \ { .0. } ) ) | 
						
							| 17 |  | lclkrlem2f.e |  |-  ( ph -> E e. F ) | 
						
							| 18 |  | lclkrlem2f.g |  |-  ( ph -> G e. F ) | 
						
							| 19 |  | lclkrlem2f.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 20 |  | lclkrlem2f.lg |  |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 21 |  | lclkrlem2f.kb |  |-  ( ph -> ( ( E .+ G ) ` B ) = Q ) | 
						
							| 22 |  | lclkrlem2f.nx |  |-  ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) | 
						
							| 23 |  | lclkrlem2f.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 24 |  | lclkrlem2f.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 25 |  | lclkrlem2f.ne |  |-  ( ph -> ( L ` E ) =/= ( L ` G ) ) | 
						
							| 26 |  | lclkrlem2f.lp |  |-  ( ph -> ( L ` ( E .+ G ) ) e. J ) | 
						
							| 27 | 1 3 15 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 28 | 10 12 13 14 27 17 18 | lkrin |  |-  ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 29 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 30 | 29 11 27 26 | lshplss |  |-  ( ph -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) ) | 
						
							| 31 | 10 13 14 27 17 18 | ldualvaddcl |  |-  ( ph -> ( E .+ G ) e. F ) | 
						
							| 32 | 16 | eldifad |  |-  ( ph -> B e. V ) | 
						
							| 33 | 4 5 6 10 12 27 31 32 | ellkr2 |  |-  ( ph -> ( B e. ( L ` ( E .+ G ) ) <-> ( ( E .+ G ) ` B ) = Q ) ) | 
						
							| 34 | 21 33 | mpbird |  |-  ( ph -> B e. ( L ` ( E .+ G ) ) ) | 
						
							| 35 | 29 9 27 30 34 | ellspsn5 |  |-  ( ph -> ( N ` { B } ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 36 | 29 | lsssssubg |  |-  ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) | 
						
							| 37 | 27 36 | syl |  |-  ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) | 
						
							| 38 | 10 12 29 | lkrlss |  |-  ( ( U e. LMod /\ E e. F ) -> ( L ` E ) e. ( LSubSp ` U ) ) | 
						
							| 39 | 27 17 38 | syl2anc |  |-  ( ph -> ( L ` E ) e. ( LSubSp ` U ) ) | 
						
							| 40 | 10 12 29 | lkrlss |  |-  ( ( U e. LMod /\ G e. F ) -> ( L ` G ) e. ( LSubSp ` U ) ) | 
						
							| 41 | 27 18 40 | syl2anc |  |-  ( ph -> ( L ` G ) e. ( LSubSp ` U ) ) | 
						
							| 42 | 29 | lssincl |  |-  ( ( U e. LMod /\ ( L ` E ) e. ( LSubSp ` U ) /\ ( L ` G ) e. ( LSubSp ` U ) ) -> ( ( L ` E ) i^i ( L ` G ) ) e. ( LSubSp ` U ) ) | 
						
							| 43 | 27 39 41 42 | syl3anc |  |-  ( ph -> ( ( L ` E ) i^i ( L ` G ) ) e. ( LSubSp ` U ) ) | 
						
							| 44 | 37 43 | sseldd |  |-  ( ph -> ( ( L ` E ) i^i ( L ` G ) ) e. ( SubGrp ` U ) ) | 
						
							| 45 | 4 29 9 | lspsncl |  |-  ( ( U e. LMod /\ B e. V ) -> ( N ` { B } ) e. ( LSubSp ` U ) ) | 
						
							| 46 | 27 32 45 | syl2anc |  |-  ( ph -> ( N ` { B } ) e. ( LSubSp ` U ) ) | 
						
							| 47 | 37 46 | sseldd |  |-  ( ph -> ( N ` { B } ) e. ( SubGrp ` U ) ) | 
						
							| 48 | 37 30 | sseldd |  |-  ( ph -> ( L ` ( E .+ G ) ) e. ( SubGrp ` U ) ) | 
						
							| 49 | 8 | lsmlub |  |-  ( ( ( ( L ` E ) i^i ( L ` G ) ) e. ( SubGrp ` U ) /\ ( N ` { B } ) e. ( SubGrp ` U ) /\ ( L ` ( E .+ G ) ) e. ( SubGrp ` U ) ) -> ( ( ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) /\ ( N ` { B } ) C_ ( L ` ( E .+ G ) ) ) <-> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) ) ) | 
						
							| 50 | 44 47 48 49 | syl3anc |  |-  ( ph -> ( ( ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) /\ ( N ` { B } ) C_ ( L ` ( E .+ G ) ) ) <-> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) ) ) | 
						
							| 51 | 28 35 50 | mpbi2and |  |-  ( ph -> ( ( ( L ` E ) i^i ( L ` G ) ) .(+) ( N ` { B } ) ) C_ ( L ` ( E .+ G ) ) ) |