| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2f.h |  | 
						
							| 2 |  | lclkrlem2f.o |  | 
						
							| 3 |  | lclkrlem2f.u |  | 
						
							| 4 |  | lclkrlem2f.v |  | 
						
							| 5 |  | lclkrlem2f.s |  | 
						
							| 6 |  | lclkrlem2f.q |  | 
						
							| 7 |  | lclkrlem2f.z |  | 
						
							| 8 |  | lclkrlem2f.a |  | 
						
							| 9 |  | lclkrlem2f.n |  | 
						
							| 10 |  | lclkrlem2f.f |  | 
						
							| 11 |  | lclkrlem2f.j |  | 
						
							| 12 |  | lclkrlem2f.l |  | 
						
							| 13 |  | lclkrlem2f.d |  | 
						
							| 14 |  | lclkrlem2f.p |  | 
						
							| 15 |  | lclkrlem2f.k |  | 
						
							| 16 |  | lclkrlem2f.b |  | 
						
							| 17 |  | lclkrlem2f.e |  | 
						
							| 18 |  | lclkrlem2f.g |  | 
						
							| 19 |  | lclkrlem2f.le |  | 
						
							| 20 |  | lclkrlem2f.lg |  | 
						
							| 21 |  | lclkrlem2f.kb |  | 
						
							| 22 |  | lclkrlem2f.nx |  | 
						
							| 23 |  | lclkrlem2h.x |  | 
						
							| 24 |  | lclkrlem2h.y |  | 
						
							| 25 |  | lclkrlem2h.ne |  | 
						
							| 26 | 15 | adantr |  | 
						
							| 27 | 16 | adantr |  | 
						
							| 28 | 17 | adantr |  | 
						
							| 29 | 18 | adantr |  | 
						
							| 30 | 19 | adantr |  | 
						
							| 31 | 20 | adantr |  | 
						
							| 32 | 21 | adantr |  | 
						
							| 33 | 22 | adantr |  | 
						
							| 34 | 23 | adantr |  | 
						
							| 35 | 24 | adantr |  | 
						
							| 36 | 25 | adantr |  | 
						
							| 37 |  | simpr |  | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 27 28 29 30 31 32 33 34 35 36 37 | lclkrlem2g |  | 
						
							| 39 | 1 3 2 4 15 | dochoc1 |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 1 3 15 | dvhlvec |  | 
						
							| 42 | 1 3 15 | dvhlmod |  | 
						
							| 43 | 10 13 14 42 17 18 | ldualvaddcl |  | 
						
							| 44 | 4 11 10 12 41 43 | lkrshpor |  | 
						
							| 45 | 44 | orcanai |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 | 46 | fveq2d |  | 
						
							| 48 | 40 47 45 | 3eqtr4d |  | 
						
							| 49 | 38 48 | pm2.61dan |  |