Metamath Proof Explorer


Theorem lclkrlem2h

Description: Lemma for lclkr . Eliminate the ( L( E .+ G ) ) e. J hypothesis. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h H = LHyp K
lclkrlem2f.o ˙ = ocH K W
lclkrlem2f.u U = DVecH K W
lclkrlem2f.v V = Base U
lclkrlem2f.s S = Scalar U
lclkrlem2f.q Q = 0 S
lclkrlem2f.z 0 ˙ = 0 U
lclkrlem2f.a ˙ = LSSum U
lclkrlem2f.n N = LSpan U
lclkrlem2f.f F = LFnl U
lclkrlem2f.j J = LSHyp U
lclkrlem2f.l L = LKer U
lclkrlem2f.d D = LDual U
lclkrlem2f.p + ˙ = + D
lclkrlem2f.k φ K HL W H
lclkrlem2f.b φ B V 0 ˙
lclkrlem2f.e φ E F
lclkrlem2f.g φ G F
lclkrlem2f.le φ L E = ˙ X
lclkrlem2f.lg φ L G = ˙ Y
lclkrlem2f.kb φ E + ˙ G B = Q
lclkrlem2f.nx φ ¬ X ˙ B ¬ Y ˙ B
lclkrlem2h.x φ X V 0 ˙
lclkrlem2h.y φ Y V 0 ˙
lclkrlem2h.ne φ L E L G
Assertion lclkrlem2h φ ˙ ˙ L E + ˙ G = L E + ˙ G

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h H = LHyp K
2 lclkrlem2f.o ˙ = ocH K W
3 lclkrlem2f.u U = DVecH K W
4 lclkrlem2f.v V = Base U
5 lclkrlem2f.s S = Scalar U
6 lclkrlem2f.q Q = 0 S
7 lclkrlem2f.z 0 ˙ = 0 U
8 lclkrlem2f.a ˙ = LSSum U
9 lclkrlem2f.n N = LSpan U
10 lclkrlem2f.f F = LFnl U
11 lclkrlem2f.j J = LSHyp U
12 lclkrlem2f.l L = LKer U
13 lclkrlem2f.d D = LDual U
14 lclkrlem2f.p + ˙ = + D
15 lclkrlem2f.k φ K HL W H
16 lclkrlem2f.b φ B V 0 ˙
17 lclkrlem2f.e φ E F
18 lclkrlem2f.g φ G F
19 lclkrlem2f.le φ L E = ˙ X
20 lclkrlem2f.lg φ L G = ˙ Y
21 lclkrlem2f.kb φ E + ˙ G B = Q
22 lclkrlem2f.nx φ ¬ X ˙ B ¬ Y ˙ B
23 lclkrlem2h.x φ X V 0 ˙
24 lclkrlem2h.y φ Y V 0 ˙
25 lclkrlem2h.ne φ L E L G
26 15 adantr φ L E + ˙ G J K HL W H
27 16 adantr φ L E + ˙ G J B V 0 ˙
28 17 adantr φ L E + ˙ G J E F
29 18 adantr φ L E + ˙ G J G F
30 19 adantr φ L E + ˙ G J L E = ˙ X
31 20 adantr φ L E + ˙ G J L G = ˙ Y
32 21 adantr φ L E + ˙ G J E + ˙ G B = Q
33 22 adantr φ L E + ˙ G J ¬ X ˙ B ¬ Y ˙ B
34 23 adantr φ L E + ˙ G J X V 0 ˙
35 24 adantr φ L E + ˙ G J Y V 0 ˙
36 25 adantr φ L E + ˙ G J L E L G
37 simpr φ L E + ˙ G J L E + ˙ G J
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 27 28 29 30 31 32 33 34 35 36 37 lclkrlem2g φ L E + ˙ G J ˙ ˙ L E + ˙ G = L E + ˙ G
39 1 3 2 4 15 dochoc1 φ ˙ ˙ V = V
40 39 adantr φ ¬ L E + ˙ G J ˙ ˙ V = V
41 1 3 15 dvhlvec φ U LVec
42 1 3 15 dvhlmod φ U LMod
43 10 13 14 42 17 18 ldualvaddcl φ E + ˙ G F
44 4 11 10 12 41 43 lkrshpor φ L E + ˙ G J L E + ˙ G = V
45 44 orcanai φ ¬ L E + ˙ G J L E + ˙ G = V
46 45 fveq2d φ ¬ L E + ˙ G J ˙ L E + ˙ G = ˙ V
47 46 fveq2d φ ¬ L E + ˙ G J ˙ ˙ L E + ˙ G = ˙ ˙ V
48 40 47 45 3eqtr4d φ ¬ L E + ˙ G J ˙ ˙ L E + ˙ G = L E + ˙ G
49 38 48 pm2.61dan φ ˙ ˙ L E + ˙ G = L E + ˙ G