Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
|
2 |
|
lclkrlem2f.o |
|
3 |
|
lclkrlem2f.u |
|
4 |
|
lclkrlem2f.v |
|
5 |
|
lclkrlem2f.s |
|
6 |
|
lclkrlem2f.q |
|
7 |
|
lclkrlem2f.z |
|
8 |
|
lclkrlem2f.a |
|
9 |
|
lclkrlem2f.n |
|
10 |
|
lclkrlem2f.f |
|
11 |
|
lclkrlem2f.j |
|
12 |
|
lclkrlem2f.l |
|
13 |
|
lclkrlem2f.d |
|
14 |
|
lclkrlem2f.p |
|
15 |
|
lclkrlem2f.k |
|
16 |
|
lclkrlem2f.b |
|
17 |
|
lclkrlem2f.e |
|
18 |
|
lclkrlem2f.g |
|
19 |
|
lclkrlem2f.le |
|
20 |
|
lclkrlem2f.lg |
|
21 |
|
lclkrlem2f.kb |
|
22 |
|
lclkrlem2f.nx |
|
23 |
|
lclkrlem2l.x |
|
24 |
|
lclkrlem2l.y |
|
25 |
15
|
adantr |
|
26 |
16
|
adantr |
|
27 |
17
|
adantr |
|
28 |
18
|
adantr |
|
29 |
19
|
adantr |
|
30 |
20
|
adantr |
|
31 |
21
|
adantr |
|
32 |
22
|
adantr |
|
33 |
|
simpr |
|
34 |
24
|
adantr |
|
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 25 26 27 28 29 30 31 32 33 34
|
lclkrlem2k |
|
36 |
15
|
adantr |
|
37 |
16
|
adantr |
|
38 |
17
|
adantr |
|
39 |
18
|
adantr |
|
40 |
19
|
adantr |
|
41 |
20
|
adantr |
|
42 |
21
|
adantr |
|
43 |
22
|
adantr |
|
44 |
23
|
adantr |
|
45 |
|
simpr |
|
46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 36 37 38 39 40 41 42 43 44 45
|
lclkrlem2j |
|
47 |
15
|
adantr |
|
48 |
16
|
adantr |
|
49 |
17
|
adantr |
|
50 |
18
|
adantr |
|
51 |
19
|
adantr |
|
52 |
20
|
adantr |
|
53 |
21
|
adantr |
|
54 |
22
|
adantr |
|
55 |
23
|
adantr |
|
56 |
|
simprl |
|
57 |
|
eldifsn |
|
58 |
55 56 57
|
sylanbrc |
|
59 |
24
|
adantr |
|
60 |
|
simprr |
|
61 |
|
eldifsn |
|
62 |
59 60 61
|
sylanbrc |
|
63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 47 48 49 50 51 52 53 54 58 62
|
lclkrlem2i |
|
64 |
35 46 63
|
pm2.61da2ne |
|