| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | lclkrlem2m.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 3 |  | lclkrlem2m.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | lclkrlem2m.q | ⊢  ×   =  ( .r ‘ 𝑆 ) | 
						
							| 5 |  | lclkrlem2m.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 6 |  | lclkrlem2m.i | ⊢ 𝐼  =  ( invr ‘ 𝑆 ) | 
						
							| 7 |  | lclkrlem2m.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2m.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2m.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 10 |  | lclkrlem2m.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 11 |  | lclkrlem2m.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 12 |  | lclkrlem2m.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 13 |  | lclkrlem2m.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 14 |  | lclkrlem2m.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 15 |  | lclkrlem2m.w | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 16 |  | lclkrlem2m.b | ⊢ 𝐵  =  ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) | 
						
							| 17 |  | lclkrlem2m.n | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠   0  ) | 
						
							| 18 |  | lveclmod | ⊢ ( 𝑈  ∈  LVec  →  𝑈  ∈  LMod ) | 
						
							| 19 | 15 18 | syl | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 20 |  | lmodgrp | ⊢ ( 𝑈  ∈  LMod  →  𝑈  ∈  Grp ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  𝑈  ∈  Grp ) | 
						
							| 22 | 3 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑆  ∈  Ring ) | 
						
							| 23 | 19 22 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 24 | 8 9 10 19 13 14 | ldualvaddcl | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  𝐹 ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 26 | 3 25 1 8 | lflcl | ⊢ ( ( 𝑈  ∈  LVec  ∧  ( 𝐸  +  𝐺 )  ∈  𝐹  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 27 | 15 24 11 26 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 28 | 3 | lvecdrng | ⊢ ( 𝑈  ∈  LVec  →  𝑆  ∈  DivRing ) | 
						
							| 29 | 15 28 | syl | ⊢ ( 𝜑  →  𝑆  ∈  DivRing ) | 
						
							| 30 | 3 25 1 8 | lflcl | ⊢ ( ( 𝑈  ∈  LVec  ∧  ( 𝐸  +  𝐺 )  ∈  𝐹  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 31 | 15 24 12 30 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 32 | 25 5 6 | drnginvrcl | ⊢ ( ( 𝑆  ∈  DivRing  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠   0  )  →  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 33 | 29 31 17 32 | syl3anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 34 | 25 4 | ringcl | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 35 | 23 27 33 34 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 36 | 1 3 2 25 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 )  ∧  𝑌  ∈  𝑉 )  →  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 37 | 19 35 12 36 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 38 | 1 7 | grpsubcl | ⊢ ( ( 𝑈  ∈  Grp  ∧  𝑋  ∈  𝑉  ∧  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  𝑉 )  →  ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  ∈  𝑉 ) | 
						
							| 39 | 21 11 37 38 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  ∈  𝑉 ) | 
						
							| 40 | 16 39 | eqeltrid | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 41 | 16 | fveq2i | ⊢ ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =  ( ( 𝐸  +  𝐺 ) ‘ ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) ) | 
						
							| 42 |  | eqid | ⊢ ( -g ‘ 𝑆 )  =  ( -g ‘ 𝑆 ) | 
						
							| 43 | 3 42 1 7 8 | lflsub | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐸  +  𝐺 )  ∈  𝐹  ∧  ( 𝑋  ∈  𝑉  ∧  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  𝑉 ) )  →  ( ( 𝐸  +  𝐺 ) ‘ ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) )  =  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( ( 𝐸  +  𝐺 ) ‘ ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) ) ) | 
						
							| 44 | 19 24 11 37 43 | syl112anc | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) )  =  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( ( 𝐸  +  𝐺 ) ‘ ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) ) ) | 
						
							| 45 | 3 25 4 1 2 8 | lflmul | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐸  +  𝐺 )  ∈  𝐹  ∧  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 )  ∧  𝑌  ∈  𝑉 ) )  →  ( ( 𝐸  +  𝐺 ) ‘ ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  =  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 46 | 19 24 35 12 45 | syl112anc | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  =  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 47 | 25 4 | ringass | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  =  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) ) ) | 
						
							| 48 | 23 27 33 31 47 | syl13anc | ⊢ ( 𝜑  →  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  =  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 50 | 25 5 4 49 6 | drnginvrl | ⊢ ( ( 𝑆  ∈  DivRing  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠   0  )  →  ( ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 51 | 29 31 17 50 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 52 | 51 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  =  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 53 | 48 52 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ×  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  =  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 54 | 25 4 49 | ringridm | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 1r ‘ 𝑆 ) )  =  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ) | 
						
							| 55 | 23 27 54 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 1r ‘ 𝑆 ) )  =  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ) | 
						
							| 56 | 46 53 55 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  =  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( ( 𝐸  +  𝐺 ) ‘ ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) )  =  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ) ) | 
						
							| 58 |  | ringgrp | ⊢ ( 𝑆  ∈  Ring  →  𝑆  ∈  Grp ) | 
						
							| 59 | 23 58 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Grp ) | 
						
							| 60 | 25 5 42 | grpsubid | ⊢ ( ( 𝑆  ∈  Grp  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) )  =   0  ) | 
						
							| 61 | 59 27 60 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( ( 𝐸  +  𝐺 ) ‘ 𝑋 ) )  =   0  ) | 
						
							| 62 | 44 57 61 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) )  =   0  ) | 
						
							| 63 | 41 62 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =   0  ) | 
						
							| 64 | 40 63 | jca | ⊢ ( 𝜑  →  ( 𝐵  ∈  𝑉  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =   0  ) ) |