| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2m.v |
|- V = ( Base ` U ) |
| 2 |
|
lclkrlem2m.t |
|- .x. = ( .s ` U ) |
| 3 |
|
lclkrlem2m.s |
|- S = ( Scalar ` U ) |
| 4 |
|
lclkrlem2m.q |
|- .X. = ( .r ` S ) |
| 5 |
|
lclkrlem2m.z |
|- .0. = ( 0g ` S ) |
| 6 |
|
lclkrlem2m.i |
|- I = ( invr ` S ) |
| 7 |
|
lclkrlem2m.m |
|- .- = ( -g ` U ) |
| 8 |
|
lclkrlem2m.f |
|- F = ( LFnl ` U ) |
| 9 |
|
lclkrlem2m.d |
|- D = ( LDual ` U ) |
| 10 |
|
lclkrlem2m.p |
|- .+ = ( +g ` D ) |
| 11 |
|
lclkrlem2m.x |
|- ( ph -> X e. V ) |
| 12 |
|
lclkrlem2m.y |
|- ( ph -> Y e. V ) |
| 13 |
|
lclkrlem2m.e |
|- ( ph -> E e. F ) |
| 14 |
|
lclkrlem2m.g |
|- ( ph -> G e. F ) |
| 15 |
|
lclkrlem2n.n |
|- N = ( LSpan ` U ) |
| 16 |
|
lclkrlem2n.l |
|- L = ( LKer ` U ) |
| 17 |
|
lclkrlem2o.h |
|- H = ( LHyp ` K ) |
| 18 |
|
lclkrlem2o.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 19 |
|
lclkrlem2o.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 20 |
|
lclkrlem2o.a |
|- .(+) = ( LSSum ` U ) |
| 21 |
|
lclkrlem2o.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 22 |
|
lclkrlem2q.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
| 23 |
|
lclkrlem2q.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
| 24 |
|
lclkrlem2q.b |
|- B = ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) |
| 25 |
|
lclkrlem2q.n |
|- ( ph -> ( ( E .+ G ) ` Y ) =/= .0. ) |
| 26 |
|
lclkrlem2q.bn |
|- ( ph -> B =/= ( 0g ` U ) ) |
| 27 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 28 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
| 29 |
17 19 21
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 29 24 25
|
lclkrlem2m |
|- ( ph -> ( B e. V /\ ( ( E .+ G ) ` B ) = .0. ) ) |
| 31 |
30
|
simpld |
|- ( ph -> B e. V ) |
| 32 |
|
eldifsn |
|- ( B e. ( V \ { ( 0g ` U ) } ) <-> ( B e. V /\ B =/= ( 0g ` U ) ) ) |
| 33 |
31 26 32
|
sylanbrc |
|- ( ph -> B e. ( V \ { ( 0g ` U ) } ) ) |
| 34 |
30
|
simprd |
|- ( ph -> ( ( E .+ G ) ` B ) = .0. ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26
|
lclkrlem2o |
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
| 36 |
17 18 19 1 3 5 27 20 15 8 28 16 9 10 21 33 13 14 22 23 34 35 11 12
|
lclkrlem2l |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |