| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v |  |-  V = ( Base ` U ) | 
						
							| 2 |  | lclkrlem2m.t |  |-  .x. = ( .s ` U ) | 
						
							| 3 |  | lclkrlem2m.s |  |-  S = ( Scalar ` U ) | 
						
							| 4 |  | lclkrlem2m.q |  |-  .X. = ( .r ` S ) | 
						
							| 5 |  | lclkrlem2m.z |  |-  .0. = ( 0g ` S ) | 
						
							| 6 |  | lclkrlem2m.i |  |-  I = ( invr ` S ) | 
						
							| 7 |  | lclkrlem2m.m |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | lclkrlem2m.f |  |-  F = ( LFnl ` U ) | 
						
							| 9 |  | lclkrlem2m.d |  |-  D = ( LDual ` U ) | 
						
							| 10 |  | lclkrlem2m.p |  |-  .+ = ( +g ` D ) | 
						
							| 11 |  | lclkrlem2m.x |  |-  ( ph -> X e. V ) | 
						
							| 12 |  | lclkrlem2m.y |  |-  ( ph -> Y e. V ) | 
						
							| 13 |  | lclkrlem2m.e |  |-  ( ph -> E e. F ) | 
						
							| 14 |  | lclkrlem2m.g |  |-  ( ph -> G e. F ) | 
						
							| 15 |  | lclkrlem2n.n |  |-  N = ( LSpan ` U ) | 
						
							| 16 |  | lclkrlem2n.l |  |-  L = ( LKer ` U ) | 
						
							| 17 |  | lclkrlem2o.h |  |-  H = ( LHyp ` K ) | 
						
							| 18 |  | lclkrlem2o.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 19 |  | lclkrlem2o.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 20 |  | lclkrlem2o.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 21 |  | lclkrlem2o.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 22 |  | lclkrlem2o.b |  |-  B = ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) | 
						
							| 23 |  | lclkrlem2o.n |  |-  ( ph -> ( ( E .+ G ) ` Y ) =/= .0. ) | 
						
							| 24 |  | lclkrlem2p.bn |  |-  ( ph -> B = ( 0g ` U ) ) | 
						
							| 25 | 17 19 21 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 26 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 27 | 1 26 15 | lspsncl |  |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 28 | 25 12 27 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 29 | 1 26 | lssss |  |-  ( ( N ` { Y } ) e. ( LSubSp ` U ) -> ( N ` { Y } ) C_ V ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> ( N ` { Y } ) C_ V ) | 
						
							| 31 | 22 24 | eqtr3id |  |-  ( ph -> ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) | 
						
							| 32 | 3 | lmodring |  |-  ( U e. LMod -> S e. Ring ) | 
						
							| 33 | 25 32 | syl |  |-  ( ph -> S e. Ring ) | 
						
							| 34 | 8 9 10 25 13 14 | ldualvaddcl |  |-  ( ph -> ( E .+ G ) e. F ) | 
						
							| 35 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 36 | 3 35 1 8 | lflcl |  |-  ( ( U e. LMod /\ ( E .+ G ) e. F /\ X e. V ) -> ( ( E .+ G ) ` X ) e. ( Base ` S ) ) | 
						
							| 37 | 25 34 11 36 | syl3anc |  |-  ( ph -> ( ( E .+ G ) ` X ) e. ( Base ` S ) ) | 
						
							| 38 | 17 19 21 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 39 | 3 | lvecdrng |  |-  ( U e. LVec -> S e. DivRing ) | 
						
							| 40 | 38 39 | syl |  |-  ( ph -> S e. DivRing ) | 
						
							| 41 | 3 35 1 8 | lflcl |  |-  ( ( U e. LMod /\ ( E .+ G ) e. F /\ Y e. V ) -> ( ( E .+ G ) ` Y ) e. ( Base ` S ) ) | 
						
							| 42 | 25 34 12 41 | syl3anc |  |-  ( ph -> ( ( E .+ G ) ` Y ) e. ( Base ` S ) ) | 
						
							| 43 | 35 5 6 | drnginvrcl |  |-  ( ( S e. DivRing /\ ( ( E .+ G ) ` Y ) e. ( Base ` S ) /\ ( ( E .+ G ) ` Y ) =/= .0. ) -> ( I ` ( ( E .+ G ) ` Y ) ) e. ( Base ` S ) ) | 
						
							| 44 | 40 42 23 43 | syl3anc |  |-  ( ph -> ( I ` ( ( E .+ G ) ` Y ) ) e. ( Base ` S ) ) | 
						
							| 45 | 35 4 | ringcl |  |-  ( ( S e. Ring /\ ( ( E .+ G ) ` X ) e. ( Base ` S ) /\ ( I ` ( ( E .+ G ) ` Y ) ) e. ( Base ` S ) ) -> ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) e. ( Base ` S ) ) | 
						
							| 46 | 33 37 44 45 | syl3anc |  |-  ( ph -> ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) e. ( Base ` S ) ) | 
						
							| 47 | 1 3 2 35 | lmodvscl |  |-  ( ( U e. LMod /\ ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) e. ( Base ` S ) /\ Y e. V ) -> ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) e. V ) | 
						
							| 48 | 25 46 12 47 | syl3anc |  |-  ( ph -> ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) e. V ) | 
						
							| 49 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 50 | 1 49 7 | lmodsubeq0 |  |-  ( ( U e. LMod /\ X e. V /\ ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) e. V ) -> ( ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) <-> X = ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) ) | 
						
							| 51 | 25 11 48 50 | syl3anc |  |-  ( ph -> ( ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) <-> X = ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) ) | 
						
							| 52 | 31 51 | mpbid |  |-  ( ph -> X = ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) | 
						
							| 53 | 52 | sneqd |  |-  ( ph -> { X } = { ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) } ) | 
						
							| 54 | 53 | fveq2d |  |-  ( ph -> ( N ` { X } ) = ( N ` { ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) } ) ) | 
						
							| 55 | 3 35 1 2 15 | lspsnvsi |  |-  ( ( U e. LMod /\ ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) e. ( Base ` S ) /\ Y e. V ) -> ( N ` { ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) } ) C_ ( N ` { Y } ) ) | 
						
							| 56 | 25 46 12 55 | syl3anc |  |-  ( ph -> ( N ` { ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) } ) C_ ( N ` { Y } ) ) | 
						
							| 57 | 54 56 | eqsstrd |  |-  ( ph -> ( N ` { X } ) C_ ( N ` { Y } ) ) | 
						
							| 58 | 17 19 1 18 | dochss |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( N ` { Y } ) C_ V /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> ( ._|_ ` ( N ` { Y } ) ) C_ ( ._|_ ` ( N ` { X } ) ) ) | 
						
							| 59 | 21 30 57 58 | syl3anc |  |-  ( ph -> ( ._|_ ` ( N ` { Y } ) ) C_ ( ._|_ ` ( N ` { X } ) ) ) | 
						
							| 60 | 12 | snssd |  |-  ( ph -> { Y } C_ V ) | 
						
							| 61 | 17 19 18 1 15 21 60 | dochocsp |  |-  ( ph -> ( ._|_ ` ( N ` { Y } ) ) = ( ._|_ ` { Y } ) ) | 
						
							| 62 | 11 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 63 | 17 19 18 1 15 21 62 | dochocsp |  |-  ( ph -> ( ._|_ ` ( N ` { X } ) ) = ( ._|_ ` { X } ) ) | 
						
							| 64 | 59 61 63 | 3sstr3d |  |-  ( ph -> ( ._|_ ` { Y } ) C_ ( ._|_ ` { X } ) ) |