| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsn.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lspsn.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
|
lspsn.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
lspsn.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
lspsn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 8 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 9 |
8
|
snssd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → { 𝑋 } ⊆ 𝑉 ) |
| 10 |
3 6 5
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑅 ∈ 𝐾 ) |
| 13 |
3 4 1 2 5 7 12 8
|
ellspsni |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 14 |
6 5 7 11 13
|
ellspsn5 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |