| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnss2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsnss2.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lspsnss2.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 4 |
|
lspsnss2.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
lspsnss2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 6 |
|
lspsnss2.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 7 |
|
lspsnss2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 8 |
|
lspsnss2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 10 |
1 9 5
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 |
6 8 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 |
1 9 5 6 11 7
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 13 |
2 3 1 4 5
|
ellspsn |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| 14 |
6 8 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| 15 |
12 14
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑌 ) ) ) |