Metamath Proof Explorer


Theorem lspsnss2

Description: Comparable spans of singletons must have proportional vectors. See lspsneq for equal span version. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses lspsnss2.v V=BaseW
lspsnss2.s S=ScalarW
lspsnss2.k K=BaseS
lspsnss2.t ·˙=W
lspsnss2.n N=LSpanW
lspsnss2.w φWLMod
lspsnss2.x φXV
lspsnss2.y φYV
Assertion lspsnss2 φNXNYkKX=k·˙Y

Proof

Step Hyp Ref Expression
1 lspsnss2.v V=BaseW
2 lspsnss2.s S=ScalarW
3 lspsnss2.k K=BaseS
4 lspsnss2.t ·˙=W
5 lspsnss2.n N=LSpanW
6 lspsnss2.w φWLMod
7 lspsnss2.x φXV
8 lspsnss2.y φYV
9 eqid LSubSpW=LSubSpW
10 1 9 5 lspsncl WLModYVNYLSubSpW
11 6 8 10 syl2anc φNYLSubSpW
12 1 9 5 6 11 7 lspsnel5 φXNYNXNY
13 2 3 1 4 5 lspsnel WLModYVXNYkKX=k·˙Y
14 6 8 13 syl2anc φXNYkKX=k·˙Y
15 12 14 bitr3d φNXNYkKX=k·˙Y