Metamath Proof Explorer


Theorem lmodsubeq0

Description: If the difference between two vectors is zero, they are equal. ( hvsubeq0 analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodsubeq0.v V=BaseW
lmodsubeq0.o 0˙=0W
lmodsubeq0.m -˙=-W
Assertion lmodsubeq0 WLModAVBVA-˙B=0˙A=B

Proof

Step Hyp Ref Expression
1 lmodsubeq0.v V=BaseW
2 lmodsubeq0.o 0˙=0W
3 lmodsubeq0.m -˙=-W
4 lmodgrp WLModWGrp
5 1 2 3 grpsubeq0 WGrpAVBVA-˙B=0˙A=B
6 4 5 syl3an1 WLModAVBVA-˙B=0˙A=B