| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2m.v |
|- V = ( Base ` U ) |
| 2 |
|
lclkrlem2m.t |
|- .x. = ( .s ` U ) |
| 3 |
|
lclkrlem2m.s |
|- S = ( Scalar ` U ) |
| 4 |
|
lclkrlem2m.q |
|- .X. = ( .r ` S ) |
| 5 |
|
lclkrlem2m.z |
|- .0. = ( 0g ` S ) |
| 6 |
|
lclkrlem2m.i |
|- I = ( invr ` S ) |
| 7 |
|
lclkrlem2m.m |
|- .- = ( -g ` U ) |
| 8 |
|
lclkrlem2m.f |
|- F = ( LFnl ` U ) |
| 9 |
|
lclkrlem2m.d |
|- D = ( LDual ` U ) |
| 10 |
|
lclkrlem2m.p |
|- .+ = ( +g ` D ) |
| 11 |
|
lclkrlem2m.x |
|- ( ph -> X e. V ) |
| 12 |
|
lclkrlem2m.y |
|- ( ph -> Y e. V ) |
| 13 |
|
lclkrlem2m.e |
|- ( ph -> E e. F ) |
| 14 |
|
lclkrlem2m.g |
|- ( ph -> G e. F ) |
| 15 |
|
lclkrlem2n.n |
|- N = ( LSpan ` U ) |
| 16 |
|
lclkrlem2n.l |
|- L = ( LKer ` U ) |
| 17 |
|
lclkrlem2o.h |
|- H = ( LHyp ` K ) |
| 18 |
|
lclkrlem2o.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 19 |
|
lclkrlem2o.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 20 |
|
lclkrlem2o.a |
|- .(+) = ( LSSum ` U ) |
| 21 |
|
lclkrlem2o.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 22 |
|
lclkrlem2q.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
| 23 |
|
lclkrlem2q.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
| 24 |
|
lclkrlem2v.j |
|- ( ph -> ( ( E .+ G ) ` X ) = .0. ) |
| 25 |
|
lclkrlem2v.k |
|- ( ph -> ( ( E .+ G ) ` Y ) = .0. ) |
| 26 |
17 19 21
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 27 |
8 9 10 26 13 14
|
ldualvaddcl |
|- ( ph -> ( E .+ G ) e. F ) |
| 28 |
1 8 16 26 27
|
lkrssv |
|- ( ph -> ( L ` ( E .+ G ) ) C_ V ) |
| 29 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 30 |
1 29 15 26 11 12
|
lspprcl |
|- ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` U ) ) |
| 31 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 32 |
17 19 1 15 31 21 11 12
|
dihprrn |
|- ( ph -> ( N ` { X , Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 33 |
1 29
|
lssss |
|- ( ( N ` { X , Y } ) e. ( LSubSp ` U ) -> ( N ` { X , Y } ) C_ V ) |
| 34 |
30 33
|
syl |
|- ( ph -> ( N ` { X , Y } ) C_ V ) |
| 35 |
17 31 19 1 18 21 34
|
dochoccl |
|- ( ph -> ( ( N ` { X , Y } ) e. ran ( ( DIsoH ` K ) ` W ) <-> ( ._|_ ` ( ._|_ ` ( N ` { X , Y } ) ) ) = ( N ` { X , Y } ) ) ) |
| 36 |
32 35
|
mpbid |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( N ` { X , Y } ) ) ) = ( N ` { X , Y } ) ) |
| 37 |
17 18 19 1 29 20 21 30 36
|
dochexmid |
|- ( ph -> ( ( N ` { X , Y } ) .(+) ( ._|_ ` ( N ` { X , Y } ) ) ) = V ) |
| 38 |
17 19 21
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 38 24 25
|
lclkrlem2n |
|- ( ph -> ( N ` { X , Y } ) C_ ( L ` ( E .+ G ) ) ) |
| 40 |
11
|
snssd |
|- ( ph -> { X } C_ V ) |
| 41 |
12
|
snssd |
|- ( ph -> { Y } C_ V ) |
| 42 |
17 19 1 18
|
dochdmj1 |
|- ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V /\ { Y } C_ V ) -> ( ._|_ ` ( { X } u. { Y } ) ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) |
| 43 |
21 40 41 42
|
syl3anc |
|- ( ph -> ( ._|_ ` ( { X } u. { Y } ) ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) |
| 44 |
|
df-pr |
|- { X , Y } = ( { X } u. { Y } ) |
| 45 |
44
|
fveq2i |
|- ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) |
| 46 |
45
|
fveq2i |
|- ( ._|_ ` ( N ` { X , Y } ) ) = ( ._|_ ` ( N ` ( { X } u. { Y } ) ) ) |
| 47 |
40 41
|
unssd |
|- ( ph -> ( { X } u. { Y } ) C_ V ) |
| 48 |
17 19 18 1 15 21 47
|
dochocsp |
|- ( ph -> ( ._|_ ` ( N ` ( { X } u. { Y } ) ) ) = ( ._|_ ` ( { X } u. { Y } ) ) ) |
| 49 |
46 48
|
eqtrid |
|- ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) = ( ._|_ ` ( { X } u. { Y } ) ) ) |
| 50 |
22 23
|
ineq12d |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) |
| 51 |
43 49 50
|
3eqtr4d |
|- ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) = ( ( L ` E ) i^i ( L ` G ) ) ) |
| 52 |
8 16 9 10 26 13 14
|
lkrin |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) |
| 53 |
51 52
|
eqsstrd |
|- ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) C_ ( L ` ( E .+ G ) ) ) |
| 54 |
29
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
| 55 |
26 54
|
syl |
|- ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
| 56 |
55 30
|
sseldd |
|- ( ph -> ( N ` { X , Y } ) e. ( SubGrp ` U ) ) |
| 57 |
17 19 1 29 18
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { X , Y } ) C_ V ) -> ( ._|_ ` ( N ` { X , Y } ) ) e. ( LSubSp ` U ) ) |
| 58 |
21 34 57
|
syl2anc |
|- ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) e. ( LSubSp ` U ) ) |
| 59 |
55 58
|
sseldd |
|- ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) e. ( SubGrp ` U ) ) |
| 60 |
8 16 29
|
lkrlss |
|- ( ( U e. LMod /\ ( E .+ G ) e. F ) -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) ) |
| 61 |
26 27 60
|
syl2anc |
|- ( ph -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) ) |
| 62 |
55 61
|
sseldd |
|- ( ph -> ( L ` ( E .+ G ) ) e. ( SubGrp ` U ) ) |
| 63 |
20
|
lsmlub |
|- ( ( ( N ` { X , Y } ) e. ( SubGrp ` U ) /\ ( ._|_ ` ( N ` { X , Y } ) ) e. ( SubGrp ` U ) /\ ( L ` ( E .+ G ) ) e. ( SubGrp ` U ) ) -> ( ( ( N ` { X , Y } ) C_ ( L ` ( E .+ G ) ) /\ ( ._|_ ` ( N ` { X , Y } ) ) C_ ( L ` ( E .+ G ) ) ) <-> ( ( N ` { X , Y } ) .(+) ( ._|_ ` ( N ` { X , Y } ) ) ) C_ ( L ` ( E .+ G ) ) ) ) |
| 64 |
56 59 62 63
|
syl3anc |
|- ( ph -> ( ( ( N ` { X , Y } ) C_ ( L ` ( E .+ G ) ) /\ ( ._|_ ` ( N ` { X , Y } ) ) C_ ( L ` ( E .+ G ) ) ) <-> ( ( N ` { X , Y } ) .(+) ( ._|_ ` ( N ` { X , Y } ) ) ) C_ ( L ` ( E .+ G ) ) ) ) |
| 65 |
39 53 64
|
mpbi2and |
|- ( ph -> ( ( N ` { X , Y } ) .(+) ( ._|_ ` ( N ` { X , Y } ) ) ) C_ ( L ` ( E .+ G ) ) ) |
| 66 |
37 65
|
eqsstrrd |
|- ( ph -> V C_ ( L ` ( E .+ G ) ) ) |
| 67 |
28 66
|
eqssd |
|- ( ph -> ( L ` ( E .+ G ) ) = V ) |