| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v |  |-  V = ( Base ` U ) | 
						
							| 2 |  | lclkrlem2m.t |  |-  .x. = ( .s ` U ) | 
						
							| 3 |  | lclkrlem2m.s |  |-  S = ( Scalar ` U ) | 
						
							| 4 |  | lclkrlem2m.q |  |-  .X. = ( .r ` S ) | 
						
							| 5 |  | lclkrlem2m.z |  |-  .0. = ( 0g ` S ) | 
						
							| 6 |  | lclkrlem2m.i |  |-  I = ( invr ` S ) | 
						
							| 7 |  | lclkrlem2m.m |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | lclkrlem2m.f |  |-  F = ( LFnl ` U ) | 
						
							| 9 |  | lclkrlem2m.d |  |-  D = ( LDual ` U ) | 
						
							| 10 |  | lclkrlem2m.p |  |-  .+ = ( +g ` D ) | 
						
							| 11 |  | lclkrlem2m.x |  |-  ( ph -> X e. V ) | 
						
							| 12 |  | lclkrlem2m.y |  |-  ( ph -> Y e. V ) | 
						
							| 13 |  | lclkrlem2m.e |  |-  ( ph -> E e. F ) | 
						
							| 14 |  | lclkrlem2m.g |  |-  ( ph -> G e. F ) | 
						
							| 15 |  | lclkrlem2n.n |  |-  N = ( LSpan ` U ) | 
						
							| 16 |  | lclkrlem2n.l |  |-  L = ( LKer ` U ) | 
						
							| 17 |  | lclkrlem2o.h |  |-  H = ( LHyp ` K ) | 
						
							| 18 |  | lclkrlem2o.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 19 |  | lclkrlem2o.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 20 |  | lclkrlem2o.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 21 |  | lclkrlem2o.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 22 |  | lclkrlem2q.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 23 |  | lclkrlem2q.lg |  |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 24 |  | lclkrlem2v.j |  |-  ( ph -> ( ( E .+ G ) ` X ) = .0. ) | 
						
							| 25 |  | lclkrlem2v.k |  |-  ( ph -> ( ( E .+ G ) ` Y ) = .0. ) | 
						
							| 26 | 17 19 21 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 27 | 8 9 10 26 13 14 | ldualvaddcl |  |-  ( ph -> ( E .+ G ) e. F ) | 
						
							| 28 | 1 8 16 26 27 | lkrssv |  |-  ( ph -> ( L ` ( E .+ G ) ) C_ V ) | 
						
							| 29 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 30 | 1 29 15 26 11 12 | lspprcl |  |-  ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` U ) ) | 
						
							| 31 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 32 | 17 19 1 15 31 21 11 12 | dihprrn |  |-  ( ph -> ( N ` { X , Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 33 | 1 29 | lssss |  |-  ( ( N ` { X , Y } ) e. ( LSubSp ` U ) -> ( N ` { X , Y } ) C_ V ) | 
						
							| 34 | 30 33 | syl |  |-  ( ph -> ( N ` { X , Y } ) C_ V ) | 
						
							| 35 | 17 31 19 1 18 21 34 | dochoccl |  |-  ( ph -> ( ( N ` { X , Y } ) e. ran ( ( DIsoH ` K ) ` W ) <-> ( ._|_ ` ( ._|_ ` ( N ` { X , Y } ) ) ) = ( N ` { X , Y } ) ) ) | 
						
							| 36 | 32 35 | mpbid |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( N ` { X , Y } ) ) ) = ( N ` { X , Y } ) ) | 
						
							| 37 | 17 18 19 1 29 20 21 30 36 | dochexmid |  |-  ( ph -> ( ( N ` { X , Y } ) .(+) ( ._|_ ` ( N ` { X , Y } ) ) ) = V ) | 
						
							| 38 | 17 19 21 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 39 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 38 24 25 | lclkrlem2n |  |-  ( ph -> ( N ` { X , Y } ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 40 | 11 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 41 | 12 | snssd |  |-  ( ph -> { Y } C_ V ) | 
						
							| 42 | 17 19 1 18 | dochdmj1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V /\ { Y } C_ V ) -> ( ._|_ ` ( { X } u. { Y } ) ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) | 
						
							| 43 | 21 40 41 42 | syl3anc |  |-  ( ph -> ( ._|_ ` ( { X } u. { Y } ) ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) | 
						
							| 44 |  | df-pr |  |-  { X , Y } = ( { X } u. { Y } ) | 
						
							| 45 | 44 | fveq2i |  |-  ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) | 
						
							| 46 | 45 | fveq2i |  |-  ( ._|_ ` ( N ` { X , Y } ) ) = ( ._|_ ` ( N ` ( { X } u. { Y } ) ) ) | 
						
							| 47 | 40 41 | unssd |  |-  ( ph -> ( { X } u. { Y } ) C_ V ) | 
						
							| 48 | 17 19 18 1 15 21 47 | dochocsp |  |-  ( ph -> ( ._|_ ` ( N ` ( { X } u. { Y } ) ) ) = ( ._|_ ` ( { X } u. { Y } ) ) ) | 
						
							| 49 | 46 48 | eqtrid |  |-  ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) = ( ._|_ ` ( { X } u. { Y } ) ) ) | 
						
							| 50 | 22 23 | ineq12d |  |-  ( ph -> ( ( L ` E ) i^i ( L ` G ) ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) | 
						
							| 51 | 43 49 50 | 3eqtr4d |  |-  ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) = ( ( L ` E ) i^i ( L ` G ) ) ) | 
						
							| 52 | 8 16 9 10 26 13 14 | lkrin |  |-  ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 53 | 51 52 | eqsstrd |  |-  ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 54 | 29 | lsssssubg |  |-  ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) | 
						
							| 55 | 26 54 | syl |  |-  ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) | 
						
							| 56 | 55 30 | sseldd |  |-  ( ph -> ( N ` { X , Y } ) e. ( SubGrp ` U ) ) | 
						
							| 57 | 17 19 1 29 18 | dochlss |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( N ` { X , Y } ) C_ V ) -> ( ._|_ ` ( N ` { X , Y } ) ) e. ( LSubSp ` U ) ) | 
						
							| 58 | 21 34 57 | syl2anc |  |-  ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) e. ( LSubSp ` U ) ) | 
						
							| 59 | 55 58 | sseldd |  |-  ( ph -> ( ._|_ ` ( N ` { X , Y } ) ) e. ( SubGrp ` U ) ) | 
						
							| 60 | 8 16 29 | lkrlss |  |-  ( ( U e. LMod /\ ( E .+ G ) e. F ) -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) ) | 
						
							| 61 | 26 27 60 | syl2anc |  |-  ( ph -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) ) | 
						
							| 62 | 55 61 | sseldd |  |-  ( ph -> ( L ` ( E .+ G ) ) e. ( SubGrp ` U ) ) | 
						
							| 63 | 20 | lsmlub |  |-  ( ( ( N ` { X , Y } ) e. ( SubGrp ` U ) /\ ( ._|_ ` ( N ` { X , Y } ) ) e. ( SubGrp ` U ) /\ ( L ` ( E .+ G ) ) e. ( SubGrp ` U ) ) -> ( ( ( N ` { X , Y } ) C_ ( L ` ( E .+ G ) ) /\ ( ._|_ ` ( N ` { X , Y } ) ) C_ ( L ` ( E .+ G ) ) ) <-> ( ( N ` { X , Y } ) .(+) ( ._|_ ` ( N ` { X , Y } ) ) ) C_ ( L ` ( E .+ G ) ) ) ) | 
						
							| 64 | 56 59 62 63 | syl3anc |  |-  ( ph -> ( ( ( N ` { X , Y } ) C_ ( L ` ( E .+ G ) ) /\ ( ._|_ ` ( N ` { X , Y } ) ) C_ ( L ` ( E .+ G ) ) ) <-> ( ( N ` { X , Y } ) .(+) ( ._|_ ` ( N ` { X , Y } ) ) ) C_ ( L ` ( E .+ G ) ) ) ) | 
						
							| 65 | 39 53 64 | mpbi2and |  |-  ( ph -> ( ( N ` { X , Y } ) .(+) ( ._|_ ` ( N ` { X , Y } ) ) ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 66 | 37 65 | eqsstrrd |  |-  ( ph -> V C_ ( L ` ( E .+ G ) ) ) | 
						
							| 67 | 28 66 | eqssd |  |-  ( ph -> ( L ` ( E .+ G ) ) = V ) |