Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2x.l |
|- L = ( LKer ` U ) |
2 |
|
lclkrlem2x.h |
|- H = ( LHyp ` K ) |
3 |
|
lclkrlem2x.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
4 |
|
lclkrlem2x.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
lclkrlem2x.v |
|- V = ( Base ` U ) |
6 |
|
lclkrlem2x.f |
|- F = ( LFnl ` U ) |
7 |
|
lclkrlem2x.d |
|- D = ( LDual ` U ) |
8 |
|
lclkrlem2x.p |
|- .+ = ( +g ` D ) |
9 |
|
lclkrlem2x.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lclkrlem2x.x |
|- ( ph -> X e. V ) |
11 |
|
lclkrlem2x.y |
|- ( ph -> Y e. V ) |
12 |
|
lclkrlem2x.e |
|- ( ph -> E e. F ) |
13 |
|
lclkrlem2x.g |
|- ( ph -> G e. F ) |
14 |
|
lclkrlem2x.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
15 |
|
lclkrlem2x.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
16 |
|
df-ne |
|- ( ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) <-> -. ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) ) |
17 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
18 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
19 |
|
eqid |
|- ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) ) |
20 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
21 |
|
eqid |
|- ( invr ` ( Scalar ` U ) ) = ( invr ` ( Scalar ` U ) ) |
22 |
|
eqid |
|- ( -g ` U ) = ( -g ` U ) |
23 |
10
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> X e. V ) |
24 |
11
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> Y e. V ) |
25 |
12
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> E e. F ) |
26 |
13
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> G e. F ) |
27 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
28 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
29 |
9
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( K e. HL /\ W e. H ) ) |
30 |
14
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
31 |
15
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
32 |
|
simpr |
|- ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) |
33 |
5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32
|
lclkrlem2u |
|- ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
34 |
16 33
|
sylan2br |
|- ( ( ph /\ -. ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
35 |
|
df-ne |
|- ( ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) <-> -. ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) |
36 |
10
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> X e. V ) |
37 |
11
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> Y e. V ) |
38 |
12
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> E e. F ) |
39 |
13
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> G e. F ) |
40 |
9
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( K e. HL /\ W e. H ) ) |
41 |
14
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
42 |
15
|
adantr |
|- ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
43 |
|
simpr |
|- ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) |
44 |
5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43
|
lclkrlem2t |
|- ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
45 |
35 44
|
sylan2br |
|- ( ( ph /\ -. ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
46 |
10
|
adantr |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> X e. V ) |
47 |
11
|
adantr |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> Y e. V ) |
48 |
12
|
adantr |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> E e. F ) |
49 |
13
|
adantr |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> G e. F ) |
50 |
9
|
adantr |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
51 |
14
|
adantr |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
52 |
15
|
adantr |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
53 |
|
simprl |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) ) |
54 |
|
simprr |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) |
55 |
5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54
|
lclkrlem2w |
|- ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
56 |
34 45 55
|
pm2.61dda |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |