| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2x.l |  |-  L = ( LKer ` U ) | 
						
							| 2 |  | lclkrlem2x.h |  |-  H = ( LHyp ` K ) | 
						
							| 3 |  | lclkrlem2x.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2x.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | lclkrlem2x.v |  |-  V = ( Base ` U ) | 
						
							| 6 |  | lclkrlem2x.f |  |-  F = ( LFnl ` U ) | 
						
							| 7 |  | lclkrlem2x.d |  |-  D = ( LDual ` U ) | 
						
							| 8 |  | lclkrlem2x.p |  |-  .+ = ( +g ` D ) | 
						
							| 9 |  | lclkrlem2x.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | lclkrlem2x.x |  |-  ( ph -> X e. V ) | 
						
							| 11 |  | lclkrlem2x.y |  |-  ( ph -> Y e. V ) | 
						
							| 12 |  | lclkrlem2x.e |  |-  ( ph -> E e. F ) | 
						
							| 13 |  | lclkrlem2x.g |  |-  ( ph -> G e. F ) | 
						
							| 14 |  | lclkrlem2x.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 15 |  | lclkrlem2x.lg |  |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 16 |  | df-ne |  |-  ( ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) <-> -. ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) ) | 
						
							| 17 |  | eqid |  |-  ( .s ` U ) = ( .s ` U ) | 
						
							| 18 |  | eqid |  |-  ( Scalar ` U ) = ( Scalar ` U ) | 
						
							| 19 |  | eqid |  |-  ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) ) | 
						
							| 20 |  | eqid |  |-  ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) | 
						
							| 21 |  | eqid |  |-  ( invr ` ( Scalar ` U ) ) = ( invr ` ( Scalar ` U ) ) | 
						
							| 22 |  | eqid |  |-  ( -g ` U ) = ( -g ` U ) | 
						
							| 23 | 10 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> X e. V ) | 
						
							| 24 | 11 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> Y e. V ) | 
						
							| 25 | 12 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> E e. F ) | 
						
							| 26 | 13 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> G e. F ) | 
						
							| 27 |  | eqid |  |-  ( LSpan ` U ) = ( LSpan ` U ) | 
						
							| 28 |  | eqid |  |-  ( LSSum ` U ) = ( LSSum ` U ) | 
						
							| 29 | 9 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 30 | 14 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 31 | 15 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 32 |  | simpr |  |-  ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) | 
						
							| 33 | 5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32 | lclkrlem2u |  |-  ( ( ph /\ ( ( E .+ G ) ` X ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 34 | 16 33 | sylan2br |  |-  ( ( ph /\ -. ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 35 |  | df-ne |  |-  ( ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) <-> -. ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) | 
						
							| 36 | 10 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> X e. V ) | 
						
							| 37 | 11 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> Y e. V ) | 
						
							| 38 | 12 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> E e. F ) | 
						
							| 39 | 13 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> G e. F ) | 
						
							| 40 | 9 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 41 | 14 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 42 | 15 | adantr |  |-  ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 43 |  | simpr |  |-  ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) | 
						
							| 44 | 5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43 | lclkrlem2t |  |-  ( ( ph /\ ( ( E .+ G ) ` Y ) =/= ( 0g ` ( Scalar ` U ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 45 | 35 44 | sylan2br |  |-  ( ( ph /\ -. ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 46 | 10 | adantr |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> X e. V ) | 
						
							| 47 | 11 | adantr |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> Y e. V ) | 
						
							| 48 | 12 | adantr |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> E e. F ) | 
						
							| 49 | 13 | adantr |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> G e. F ) | 
						
							| 50 | 9 | adantr |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 51 | 14 | adantr |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 52 | 15 | adantr |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 53 |  | simprl |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) ) | 
						
							| 54 |  | simprr |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) | 
						
							| 55 | 5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54 | lclkrlem2w |  |-  ( ( ph /\ ( ( ( E .+ G ) ` X ) = ( 0g ` ( Scalar ` U ) ) /\ ( ( E .+ G ) ` Y ) = ( 0g ` ( Scalar ` U ) ) ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 56 | 34 45 55 | pm2.61dda |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |