Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
doch11
Next ⟩
dochsordN
Metamath Proof Explorer
Ascii
Unicode
Theorem
doch11
Description:
Orthocomplement is one-to-one.
(Contributed by
NM
, 12-Aug-2014)
Ref
Expression
Hypotheses
doch11.h
⊢
H
=
LHyp
⁡
K
doch11.i
⊢
I
=
DIsoH
⁡
K
⁡
W
doch11.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
doch11.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
doch11.x
⊢
φ
→
X
∈
ran
⁡
I
doch11.y
⊢
φ
→
Y
∈
ran
⁡
I
Assertion
doch11
⊢
φ
→
⊥
˙
⁡
X
=
⊥
˙
⁡
Y
↔
X
=
Y
Proof
Step
Hyp
Ref
Expression
1
doch11.h
⊢
H
=
LHyp
⁡
K
2
doch11.i
⊢
I
=
DIsoH
⁡
K
⁡
W
3
doch11.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
4
doch11.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
5
doch11.x
⊢
φ
→
X
∈
ran
⁡
I
6
doch11.y
⊢
φ
→
Y
∈
ran
⁡
I
7
1
2
3
4
6
5
dochord
⊢
φ
→
Y
⊆
X
↔
⊥
˙
⁡
X
⊆
⊥
˙
⁡
Y
8
1
2
3
4
5
6
dochord
⊢
φ
→
X
⊆
Y
↔
⊥
˙
⁡
Y
⊆
⊥
˙
⁡
X
9
7
8
anbi12d
⊢
φ
→
Y
⊆
X
∧
X
⊆
Y
↔
⊥
˙
⁡
X
⊆
⊥
˙
⁡
Y
∧
⊥
˙
⁡
Y
⊆
⊥
˙
⁡
X
10
eqcom
⊢
X
=
Y
↔
Y
=
X
11
eqss
⊢
Y
=
X
↔
Y
⊆
X
∧
X
⊆
Y
12
10
11
bitri
⊢
X
=
Y
↔
Y
⊆
X
∧
X
⊆
Y
13
eqss
⊢
⊥
˙
⁡
X
=
⊥
˙
⁡
Y
↔
⊥
˙
⁡
X
⊆
⊥
˙
⁡
Y
∧
⊥
˙
⁡
Y
⊆
⊥
˙
⁡
X
14
9
12
13
3bitr4g
⊢
φ
→
X
=
Y
↔
⊥
˙
⁡
X
=
⊥
˙
⁡
Y
15
14
bicomd
⊢
φ
→
⊥
˙
⁡
X
=
⊥
˙
⁡
Y
↔
X
=
Y