Metamath Proof Explorer


Theorem dochsordN

Description: Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses doch11.h H=LHypK
doch11.i I=DIsoHKW
doch11.o ˙=ocHKW
doch11.k φKHLWH
doch11.x φXranI
doch11.y φYranI
Assertion dochsordN φXY˙Y˙X

Proof

Step Hyp Ref Expression
1 doch11.h H=LHypK
2 doch11.i I=DIsoHKW
3 doch11.o ˙=ocHKW
4 doch11.k φKHLWH
5 doch11.x φXranI
6 doch11.y φYranI
7 1 2 3 4 5 6 dochord φXY˙Y˙X
8 1 2 3 4 6 5 doch11 φ˙Y=˙XY=X
9 eqcom Y=XX=Y
10 8 9 bitr2di φX=Y˙Y=˙X
11 10 necon3bid φXY˙Y˙X
12 7 11 anbi12d φXYXY˙Y˙X˙Y˙X
13 df-pss XYXYXY
14 df-pss ˙Y˙X˙Y˙X˙Y˙X
15 12 13 14 3bitr4g φXY˙Y˙X