Metamath Proof Explorer


Theorem dochsordN

Description: Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses doch11.h 𝐻 = ( LHyp ‘ 𝐾 )
doch11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
doch11.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
doch11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
doch11.x ( 𝜑𝑋 ∈ ran 𝐼 )
doch11.y ( 𝜑𝑌 ∈ ran 𝐼 )
Assertion dochsordN ( 𝜑 → ( 𝑋𝑌 ↔ ( 𝑌 ) ⊊ ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 doch11.h 𝐻 = ( LHyp ‘ 𝐾 )
2 doch11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 doch11.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
4 doch11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 doch11.x ( 𝜑𝑋 ∈ ran 𝐼 )
6 doch11.y ( 𝜑𝑌 ∈ ran 𝐼 )
7 1 2 3 4 5 6 dochord ( 𝜑 → ( 𝑋𝑌 ↔ ( 𝑌 ) ⊆ ( 𝑋 ) ) )
8 1 2 3 4 6 5 doch11 ( 𝜑 → ( ( 𝑌 ) = ( 𝑋 ) ↔ 𝑌 = 𝑋 ) )
9 eqcom ( 𝑌 = 𝑋𝑋 = 𝑌 )
10 8 9 bitr2di ( 𝜑 → ( 𝑋 = 𝑌 ↔ ( 𝑌 ) = ( 𝑋 ) ) )
11 10 necon3bid ( 𝜑 → ( 𝑋𝑌 ↔ ( 𝑌 ) ≠ ( 𝑋 ) ) )
12 7 11 anbi12d ( 𝜑 → ( ( 𝑋𝑌𝑋𝑌 ) ↔ ( ( 𝑌 ) ⊆ ( 𝑋 ) ∧ ( 𝑌 ) ≠ ( 𝑋 ) ) ) )
13 df-pss ( 𝑋𝑌 ↔ ( 𝑋𝑌𝑋𝑌 ) )
14 df-pss ( ( 𝑌 ) ⊊ ( 𝑋 ) ↔ ( ( 𝑌 ) ⊆ ( 𝑋 ) ∧ ( 𝑌 ) ≠ ( 𝑋 ) ) )
15 12 13 14 3bitr4g ( 𝜑 → ( 𝑋𝑌 ↔ ( 𝑌 ) ⊊ ( 𝑋 ) ) )