Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl9a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfl9a.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfl9a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfl9a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfl9a.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lcfl9a.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcfl9a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
lcfl9a.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
lcfl9a.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
lcfl9a.s |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝐺 ) ) |
11 |
1 3 2 4 7
|
dochoc1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) |
13 |
1 3 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
4 5 6 13 8
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
16 |
|
sneq |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑋 } = { ( 0g ‘ 𝑈 ) } ) |
17 |
16
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( ⊥ ‘ { 𝑋 } ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
19 |
1 3 2 4 18
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
20 |
7 19
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
21 |
17 20
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ { 𝑋 } ) = 𝑉 ) |
22 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝐺 ) ) |
23 |
21 22
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → 𝑉 ⊆ ( 𝐿 ‘ 𝐺 ) ) |
24 |
15 23
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ⊥ ‘ 𝑉 ) ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) ) |
27 |
12 26 24
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
28 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
30 |
29
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ⊥ ‘ 𝑉 ) ) |
31 |
30
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) ) |
32 |
28 31 29
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
33 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
34 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
35 |
1 34 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
36 |
7 33 35
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
37 |
1 34 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
38 |
7 36 37
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
40 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( ⊥ ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝐺 ) ) |
41 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
42 |
1 3 7
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → 𝑈 ∈ LVec ) |
44 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
45 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → 𝑋 ∈ 𝑉 ) |
46 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → 𝑋 ≠ ( 0g ‘ 𝑈 ) ) |
47 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) ) |
48 |
45 46 47
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → 𝑋 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
49 |
1 2 3 4 18 41 44 48
|
dochsnshp |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( ⊥ ‘ { 𝑋 } ) ∈ ( LSHyp ‘ 𝑈 ) ) |
50 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) |
51 |
4 41 5 6 42 8
|
lkrshp4 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ↔ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ↔ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ) |
53 |
50 52
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) |
54 |
41 43 49 53
|
lshpcmp |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( ( ⊥ ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝐺 ) ↔ ( ⊥ ‘ { 𝑋 } ) = ( 𝐿 ‘ 𝐺 ) ) ) |
55 |
40 54
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( ⊥ ‘ { 𝑋 } ) = ( 𝐿 ‘ 𝐺 ) ) |
56 |
55
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) = ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) |
57 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
58 |
39 57 55
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
59 |
27 32 58
|
pm2.61da2ne |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |