Metamath Proof Explorer


Theorem lcfl9a

Description: Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses lcfl9a.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfl9a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfl9a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfl9a.v 𝑉 = ( Base ‘ 𝑈 )
lcfl9a.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfl9a.l 𝐿 = ( LKer ‘ 𝑈 )
lcfl9a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfl9a.g ( 𝜑𝐺𝐹 )
lcfl9a.x ( 𝜑𝑋𝑉 )
lcfl9a.s ( 𝜑 → ( ‘ { 𝑋 } ) ⊆ ( 𝐿𝐺 ) )
Assertion lcfl9a ( 𝜑 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) )

Proof

Step Hyp Ref Expression
1 lcfl9a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfl9a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfl9a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfl9a.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfl9a.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcfl9a.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfl9a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 lcfl9a.g ( 𝜑𝐺𝐹 )
9 lcfl9a.x ( 𝜑𝑋𝑉 )
10 lcfl9a.s ( 𝜑 → ( ‘ { 𝑋 } ) ⊆ ( 𝐿𝐺 ) )
11 1 3 2 4 7 dochoc1 ( 𝜑 → ( ‘ ( 𝑉 ) ) = 𝑉 )
12 11 adantr ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( ‘ ( 𝑉 ) ) = 𝑉 )
13 1 3 7 dvhlmod ( 𝜑𝑈 ∈ LMod )
14 4 5 6 13 8 lkrssv ( 𝜑 → ( 𝐿𝐺 ) ⊆ 𝑉 )
15 14 adantr ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( 𝐿𝐺 ) ⊆ 𝑉 )
16 sneq ( 𝑋 = ( 0g𝑈 ) → { 𝑋 } = { ( 0g𝑈 ) } )
17 16 fveq2d ( 𝑋 = ( 0g𝑈 ) → ( ‘ { 𝑋 } ) = ( ‘ { ( 0g𝑈 ) } ) )
18 eqid ( 0g𝑈 ) = ( 0g𝑈 )
19 1 3 2 4 18 doch0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ‘ { ( 0g𝑈 ) } ) = 𝑉 )
20 7 19 syl ( 𝜑 → ( ‘ { ( 0g𝑈 ) } ) = 𝑉 )
21 17 20 sylan9eqr ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( ‘ { 𝑋 } ) = 𝑉 )
22 10 adantr ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( ‘ { 𝑋 } ) ⊆ ( 𝐿𝐺 ) )
23 21 22 eqsstrrd ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → 𝑉 ⊆ ( 𝐿𝐺 ) )
24 15 23 eqssd ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( 𝐿𝐺 ) = 𝑉 )
25 24 fveq2d ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( ‘ ( 𝐿𝐺 ) ) = ( 𝑉 ) )
26 25 fveq2d ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( ‘ ( 𝑉 ) ) )
27 12 26 24 3eqtr4d ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) )
28 11 adantr ( ( 𝜑 ∧ ( 𝐿𝐺 ) = 𝑉 ) → ( ‘ ( 𝑉 ) ) = 𝑉 )
29 simpr ( ( 𝜑 ∧ ( 𝐿𝐺 ) = 𝑉 ) → ( 𝐿𝐺 ) = 𝑉 )
30 29 fveq2d ( ( 𝜑 ∧ ( 𝐿𝐺 ) = 𝑉 ) → ( ‘ ( 𝐿𝐺 ) ) = ( 𝑉 ) )
31 30 fveq2d ( ( 𝜑 ∧ ( 𝐿𝐺 ) = 𝑉 ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( ‘ ( 𝑉 ) ) )
32 28 31 29 3eqtr4d ( ( 𝜑 ∧ ( 𝐿𝐺 ) = 𝑉 ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) )
33 9 snssd ( 𝜑 → { 𝑋 } ⊆ 𝑉 )
34 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
35 1 34 3 4 2 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
36 7 33 35 syl2anc ( 𝜑 → ( ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
37 1 34 2 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ‘ ( ‘ ( ‘ { 𝑋 } ) ) ) = ( ‘ { 𝑋 } ) )
38 7 36 37 syl2anc ( 𝜑 → ( ‘ ( ‘ ( ‘ { 𝑋 } ) ) ) = ( ‘ { 𝑋 } ) )
39 38 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( ‘ ( ‘ ( ‘ { 𝑋 } ) ) ) = ( ‘ { 𝑋 } ) )
40 10 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( ‘ { 𝑋 } ) ⊆ ( 𝐿𝐺 ) )
41 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
42 1 3 7 dvhlvec ( 𝜑𝑈 ∈ LVec )
43 42 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → 𝑈 ∈ LVec )
44 7 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
45 9 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → 𝑋𝑉 )
46 simprl ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → 𝑋 ≠ ( 0g𝑈 ) )
47 eldifsn ( 𝑋 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) ↔ ( 𝑋𝑉𝑋 ≠ ( 0g𝑈 ) ) )
48 45 46 47 sylanbrc ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → 𝑋 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
49 1 2 3 4 18 41 44 48 dochsnshp ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( ‘ { 𝑋 } ) ∈ ( LSHyp ‘ 𝑈 ) )
50 simprr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( 𝐿𝐺 ) ≠ 𝑉 )
51 4 41 5 6 42 8 lkrshp4 ( 𝜑 → ( ( 𝐿𝐺 ) ≠ 𝑉 ↔ ( 𝐿𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) )
52 51 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( ( 𝐿𝐺 ) ≠ 𝑉 ↔ ( 𝐿𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) )
53 50 52 mpbid ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( 𝐿𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) )
54 41 43 49 53 lshpcmp ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( ( ‘ { 𝑋 } ) ⊆ ( 𝐿𝐺 ) ↔ ( ‘ { 𝑋 } ) = ( 𝐿𝐺 ) ) )
55 40 54 mpbid ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( ‘ { 𝑋 } ) = ( 𝐿𝐺 ) )
56 55 fveq2d ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( ‘ ( ‘ { 𝑋 } ) ) = ( ‘ ( 𝐿𝐺 ) ) )
57 56 fveq2d ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( ‘ ( ‘ ( ‘ { 𝑋 } ) ) ) = ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) )
58 39 57 55 3eqtr3d ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) )
59 27 32 58 pm2.61da2ne ( 𝜑 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) )