Metamath Proof Explorer


Theorem lcfl8b

Description: Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses lcfl8b.h H = LHyp K
lcfl8b.o ˙ = ocH K W
lcfl8b.u U = DVecH K W
lcfl8b.v V = Base U
lcfl8b.n N = LSpan U
lcfl8b.z 0 ˙ = 0 U
lcfl8b.f F = LFnl U
lcfl8b.l L = LKer U
lcfl8b.d D = LDual U
lcfl8b.y Y = 0 D
lcfl8b.c C = f F | ˙ ˙ L f = L f
lcfl8b.k φ K HL W H
lcfl8b.g φ G C Y
Assertion lcfl8b φ x V 0 ˙ ˙ L G = N x

Proof

Step Hyp Ref Expression
1 lcfl8b.h H = LHyp K
2 lcfl8b.o ˙ = ocH K W
3 lcfl8b.u U = DVecH K W
4 lcfl8b.v V = Base U
5 lcfl8b.n N = LSpan U
6 lcfl8b.z 0 ˙ = 0 U
7 lcfl8b.f F = LFnl U
8 lcfl8b.l L = LKer U
9 lcfl8b.d D = LDual U
10 lcfl8b.y Y = 0 D
11 lcfl8b.c C = f F | ˙ ˙ L f = L f
12 lcfl8b.k φ K HL W H
13 lcfl8b.g φ G C Y
14 13 eldifad φ G C
15 11 lcfl1lem G C G F ˙ ˙ L G = L G
16 15 simplbi G C G F
17 14 16 syl φ G F
18 1 2 3 4 7 8 11 12 17 lcfl8 φ G C x V L G = ˙ x
19 14 18 mpbid φ x V L G = ˙ x
20 fveq2 L G = ˙ x ˙ L G = ˙ ˙ x
21 20 adantl φ x V L G = ˙ x ˙ L G = ˙ ˙ x
22 12 ad2antrr φ x V L G = ˙ x K HL W H
23 simplr φ x V L G = ˙ x x V
24 1 3 2 4 5 22 23 dochocsn φ x V L G = ˙ x ˙ ˙ x = N x
25 21 24 eqtrd φ x V L G = ˙ x ˙ L G = N x
26 14 15 sylib φ G F ˙ ˙ L G = L G
27 26 simprd φ ˙ ˙ L G = L G
28 eldifsni G C Y G Y
29 13 28 syl φ G Y
30 1 3 12 dvhlmod φ U LMod
31 4 7 8 9 10 30 17 lkr0f2 φ L G = V G = Y
32 31 necon3bid φ L G V G Y
33 29 32 mpbird φ L G V
34 27 33 eqnetrd φ ˙ ˙ L G V
35 34 ad2antrr φ x V L G = ˙ x ˙ ˙ L G V
36 eqid LSAtoms U = LSAtoms U
37 17 ad2antrr φ x V L G = ˙ x G F
38 1 2 3 4 36 7 8 22 37 dochkrsat2 φ x V L G = ˙ x ˙ ˙ L G V ˙ L G LSAtoms U
39 35 38 mpbid φ x V L G = ˙ x ˙ L G LSAtoms U
40 25 39 eqeltrrd φ x V L G = ˙ x N x LSAtoms U
41 30 ad2antrr φ x V L G = ˙ x U LMod
42 4 5 6 36 41 23 lsatspn0 φ x V L G = ˙ x N x LSAtoms U x 0 ˙
43 40 42 mpbid φ x V L G = ˙ x x 0 ˙
44 43 25 jca φ x V L G = ˙ x x 0 ˙ ˙ L G = N x
45 44 ex φ x V L G = ˙ x x 0 ˙ ˙ L G = N x
46 45 reximdva φ x V L G = ˙ x x V x 0 ˙ ˙ L G = N x
47 19 46 mpd φ x V x 0 ˙ ˙ L G = N x
48 rexdifsn x V 0 ˙ ˙ L G = N x x V x 0 ˙ ˙ L G = N x
49 47 48 sylibr φ x V 0 ˙ ˙ L G = N x