Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfl8.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfl8.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfl8.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfl8.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lcfl8.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcfl8.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
8 |
|
lcfl8.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
lcfl8.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
10 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) → 𝑈 ∈ LMod ) |
12 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
14 |
4 12 13
|
islsati |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑥 ∈ 𝑉 ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) |
15 |
11 14
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑥 ∈ 𝑉 ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) |
16 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) |
17 |
16
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) ) |
18 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → 𝐺 ∈ 𝐶 ) |
19 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → 𝐺 ∈ 𝐹 ) |
20 |
7 19
|
lcfl1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( 𝐺 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
21 |
18 20
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
22 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → 𝑥 ∈ 𝑉 ) |
24 |
23
|
snssd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → { 𝑥 } ⊆ 𝑉 ) |
25 |
1 3 2 4 12 22 24
|
dochocsp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) = ( ⊥ ‘ { 𝑥 } ) ) |
26 |
17 21 25
|
3eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
27 |
26
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |
28 |
27
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ∃ 𝑥 ∈ 𝑉 ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |
29 |
15 28
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
30 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → 𝑈 ∈ LMod ) |
31 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
32 |
4 31
|
lmod0vcl |
⊢ ( 𝑈 ∈ LMod → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
33 |
30 32
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
35 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
37 |
1 3 2 4 31
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
39 |
34 38
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) |
40 |
|
sneq |
⊢ ( 𝑥 = ( 0g ‘ 𝑈 ) → { 𝑥 } = { ( 0g ‘ 𝑈 ) } ) |
41 |
40
|
fveq2d |
⊢ ( 𝑥 = ( 0g ‘ 𝑈 ) → ( ⊥ ‘ { 𝑥 } ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) |
42 |
41
|
rspceeqv |
⊢ ( ( ( 0g ‘ 𝑈 ) ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
43 |
33 39 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
44 |
1 2 3 4 13 5 6 7 8 9
|
lcfl3 |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |
45 |
44
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) |
46 |
29 43 45
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
47 |
46
|
ex |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |
48 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
49 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → 𝑥 ∈ 𝑉 ) |
50 |
49
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → { 𝑥 } ⊆ 𝑉 ) |
51 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
52 |
1 51 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑥 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑥 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
53 |
48 50 52
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ { 𝑥 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
54 |
1 51 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ { 𝑥 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) = ( ⊥ ‘ { 𝑥 } ) ) |
55 |
48 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) = ( ⊥ ‘ { 𝑥 } ) ) |
56 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
57 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) |
58 |
57
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) ) |
59 |
55 58 56
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
60 |
59
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
61 |
7 9
|
lcfl1 |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
62 |
60 61
|
sylibrd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) → 𝐺 ∈ 𝐶 ) ) |
63 |
47 62
|
impbid |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |