| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfl8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcfl8.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcfl8.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lcfl8.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lcfl8.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 6 |
|
lcfl8.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 7 |
|
lcfl8.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
| 8 |
|
lcfl8.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
lcfl8.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 10 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) → 𝑈 ∈ LMod ) |
| 12 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 13 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
| 14 |
4 12 13
|
islsati |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑥 ∈ 𝑉 ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) |
| 15 |
11 14
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑥 ∈ 𝑉 ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) |
| 16 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) ) |
| 18 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → 𝐺 ∈ 𝐶 ) |
| 19 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → 𝐺 ∈ 𝐹 ) |
| 20 |
7 19
|
lcfl1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( 𝐺 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
| 21 |
18 20
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
| 22 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 23 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → 𝑥 ∈ 𝑉 ) |
| 24 |
23
|
snssd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → { 𝑥 } ⊆ 𝑉 ) |
| 25 |
1 3 2 4 12 22 24
|
dochocsp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) = ( ⊥ ‘ { 𝑥 } ) ) |
| 26 |
17 21 25
|
3eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
| 27 |
26
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |
| 28 |
27
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ∃ 𝑥 ∈ 𝑉 ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑥 } ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |
| 29 |
15 28
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
| 30 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → 𝑈 ∈ LMod ) |
| 31 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 32 |
4 31
|
lmod0vcl |
⊢ ( 𝑈 ∈ LMod → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
| 33 |
30 32
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
| 34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
| 35 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 37 |
1 3 2 4 31
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
| 39 |
34 38
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) |
| 40 |
|
sneq |
⊢ ( 𝑥 = ( 0g ‘ 𝑈 ) → { 𝑥 } = { ( 0g ‘ 𝑈 ) } ) |
| 41 |
40
|
fveq2d |
⊢ ( 𝑥 = ( 0g ‘ 𝑈 ) → ( ⊥ ‘ { 𝑥 } ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) |
| 42 |
41
|
rspceeqv |
⊢ ( ( ( 0g ‘ 𝑈 ) ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
| 43 |
33 39 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
| 44 |
1 2 3 4 13 5 6 7 8 9
|
lcfl3 |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |
| 45 |
44
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) |
| 46 |
29 43 45
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
| 47 |
46
|
ex |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |
| 48 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 49 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → 𝑥 ∈ 𝑉 ) |
| 50 |
49
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → { 𝑥 } ⊆ 𝑉 ) |
| 51 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 52 |
1 51 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑥 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑥 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 53 |
48 50 52
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ { 𝑥 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 54 |
1 51 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ { 𝑥 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) = ( ⊥ ‘ { 𝑥 } ) ) |
| 55 |
48 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) = ( ⊥ ‘ { 𝑥 } ) ) |
| 56 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
| 57 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) |
| 58 |
57
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) ) |
| 59 |
55 58 56
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
| 60 |
59
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
| 61 |
7 9
|
lcfl1 |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
| 62 |
60 61
|
sylibrd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) → 𝐺 ∈ 𝐶 ) ) |
| 63 |
47 62
|
impbid |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |