Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl6lem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfl6lem.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfl6lem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfl6lem.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfl6lem.a |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcfl6lem.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
lcfl6lem.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
8 |
|
lcfl6lem.i |
⊢ 1 = ( 1r ‘ 𝑆 ) |
9 |
|
lcfl6lem.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
10 |
|
lcfl6lem.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
11 |
|
lcfl6lem.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
12 |
|
lcfl6lem.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
13 |
|
lcfl6lem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
lcfl6lem.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
15 |
|
lcfl6lem.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) ) |
16 |
|
lcfl6lem.y |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = 1 ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
18 |
1 3 13
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
19 |
1 3 13
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
20 |
4 11 12 19 14
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
21 |
1 3 4 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑉 ) |
22 |
13 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑉 ) |
23 |
15
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) |
24 |
22 23
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
25 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
26 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) → 𝑋 ≠ 0 ) |
27 |
15 26
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
28 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
29 |
24 27 28
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
30 |
1 2 3 4 10 5 6 11 7 9 25 13 29
|
dochflcl |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) ∈ 𝐹 ) |
31 |
1 2 3 4 10 11 12 13 14 15
|
dochsnkr |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑋 } ) ) |
32 |
1 2 3 4 10 5 6 12 7 9 25 13 29
|
dochsnkr2 |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
33 |
31 32
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) ) ) |
34 |
1 2 3 4 5 6 10 7 9 8 13 29 25
|
dochfl1 |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) ‘ 𝑋 ) = 1 ) |
35 |
16 34
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) ‘ 𝑋 ) ) |
36 |
1 2 3 4 7 17 10 11 12 13 14 15
|
dochfln0 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ≠ ( 0g ‘ 𝑆 ) ) |
37 |
4 7 9 17 11 12 18 24 14 30 33 35 36
|
eqlkr3 |
⊢ ( 𝜑 → 𝐺 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) ) |