| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrslem1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lclkrslem1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lclkrslem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lclkrslem1.s |
|- S = ( LSubSp ` U ) |
| 5 |
|
lclkrslem1.f |
|- F = ( LFnl ` U ) |
| 6 |
|
lclkrslem1.l |
|- L = ( LKer ` U ) |
| 7 |
|
lclkrslem1.d |
|- D = ( LDual ` U ) |
| 8 |
|
lclkrslem1.r |
|- R = ( Scalar ` U ) |
| 9 |
|
lclkrslem1.b |
|- B = ( Base ` R ) |
| 10 |
|
lclkrslem1.t |
|- .x. = ( .s ` D ) |
| 11 |
|
lclkrslem1.c |
|- C = { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ Q ) } |
| 12 |
|
lclkrslem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
lclkrslem1.q |
|- ( ph -> Q e. S ) |
| 14 |
|
lclkrslem1.g |
|- ( ph -> G e. C ) |
| 15 |
|
lclkrslem2.p |
|- .+ = ( +g ` D ) |
| 16 |
|
lclkrslem2.e |
|- ( ph -> E e. C ) |
| 17 |
|
eqid |
|- { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
| 18 |
11 17
|
lcfls1c |
|- ( E e. C <-> ( E e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` E ) ) C_ Q ) ) |
| 19 |
18
|
simplbi |
|- ( E e. C -> E e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
| 20 |
16 19
|
syl |
|- ( ph -> E e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
| 21 |
11 17
|
lcfls1c |
|- ( G e. C <-> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) |
| 22 |
21
|
simplbi |
|- ( G e. C -> G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
| 23 |
14 22
|
syl |
|- ( ph -> G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
| 24 |
1 2 3 5 6 7 15 17 12 20 23
|
lclkrlem2 |
|- ( ph -> ( E .+ G ) e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
| 25 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 26 |
1 3 12
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 27 |
11
|
lcfls1lem |
|- ( E e. C <-> ( E e. F /\ ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) /\ ( ._|_ ` ( L ` E ) ) C_ Q ) ) |
| 28 |
16 27
|
sylib |
|- ( ph -> ( E e. F /\ ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) /\ ( ._|_ ` ( L ` E ) ) C_ Q ) ) |
| 29 |
28
|
simp1d |
|- ( ph -> E e. F ) |
| 30 |
11
|
lcfls1lem |
|- ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) |
| 31 |
14 30
|
sylib |
|- ( ph -> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) |
| 32 |
31
|
simp1d |
|- ( ph -> G e. F ) |
| 33 |
5 7 15 26 29 32
|
ldualvaddcl |
|- ( ph -> ( E .+ G ) e. F ) |
| 34 |
25 5 6 26 33
|
lkrssv |
|- ( ph -> ( L ` ( E .+ G ) ) C_ ( Base ` U ) ) |
| 35 |
5 6 7 15 26 29 32
|
lkrin |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) |
| 36 |
1 3 25 2
|
dochss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` ( E .+ G ) ) C_ ( Base ` U ) /\ ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) C_ ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) ) |
| 37 |
12 34 35 36
|
syl3anc |
|- ( ph -> ( ._|_ ` ( L ` ( E .+ G ) ) ) C_ ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) ) |
| 38 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 39 |
|
eqid |
|- ( ( joinH ` K ) ` W ) = ( ( joinH ` K ) ` W ) |
| 40 |
28
|
simp2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) ) |
| 41 |
1 38 2 3 5 6 12 29
|
lcfl5a |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) <-> ( L ` E ) e. ran ( ( DIsoH ` K ) ` W ) ) ) |
| 42 |
40 41
|
mpbid |
|- ( ph -> ( L ` E ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 43 |
31
|
simp2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |
| 44 |
1 38 2 3 5 6 12 32
|
lcfl5a |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> ( L ` G ) e. ran ( ( DIsoH ` K ) ` W ) ) ) |
| 45 |
43 44
|
mpbid |
|- ( ph -> ( L ` G ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 46 |
1 38 3 25 2 39 12 42 45
|
dochdmm1 |
|- ( ph -> ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) = ( ( ._|_ ` ( L ` E ) ) ( ( joinH ` K ) ` W ) ( ._|_ ` ( L ` G ) ) ) ) |
| 47 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
| 48 |
25 5 6 26 29
|
lkrssv |
|- ( ph -> ( L ` E ) C_ ( Base ` U ) ) |
| 49 |
1 38 3 25 2
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` E ) C_ ( Base ` U ) ) -> ( ._|_ ` ( L ` E ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 50 |
12 48 49
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` E ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 51 |
1 38 2 3 47 5 6 12 50 32
|
dochkrsm |
|- ( ph -> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 52 |
1 3 25 4 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` E ) C_ ( Base ` U ) ) -> ( ._|_ ` ( L ` E ) ) e. S ) |
| 53 |
12 48 52
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` E ) ) e. S ) |
| 54 |
25 5 6 26 32
|
lkrssv |
|- ( ph -> ( L ` G ) C_ ( Base ` U ) ) |
| 55 |
1 3 25 4 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` G ) C_ ( Base ` U ) ) -> ( ._|_ ` ( L ` G ) ) e. S ) |
| 56 |
12 54 55
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` G ) ) e. S ) |
| 57 |
1 3 25 4 47 38 39 12 53 56
|
djhlsmcl |
|- ( ph -> ( ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) e. ran ( ( DIsoH ` K ) ` W ) <-> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) = ( ( ._|_ ` ( L ` E ) ) ( ( joinH ` K ) ` W ) ( ._|_ ` ( L ` G ) ) ) ) ) |
| 58 |
51 57
|
mpbid |
|- ( ph -> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) = ( ( ._|_ ` ( L ` E ) ) ( ( joinH ` K ) ` W ) ( ._|_ ` ( L ` G ) ) ) ) |
| 59 |
46 58
|
eqtr4d |
|- ( ph -> ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) = ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) ) |
| 60 |
28
|
simp3d |
|- ( ph -> ( ._|_ ` ( L ` E ) ) C_ Q ) |
| 61 |
31
|
simp3d |
|- ( ph -> ( ._|_ ` ( L ` G ) ) C_ Q ) |
| 62 |
4
|
lsssssubg |
|- ( U e. LMod -> S C_ ( SubGrp ` U ) ) |
| 63 |
26 62
|
syl |
|- ( ph -> S C_ ( SubGrp ` U ) ) |
| 64 |
63 53
|
sseldd |
|- ( ph -> ( ._|_ ` ( L ` E ) ) e. ( SubGrp ` U ) ) |
| 65 |
63 56
|
sseldd |
|- ( ph -> ( ._|_ ` ( L ` G ) ) e. ( SubGrp ` U ) ) |
| 66 |
63 13
|
sseldd |
|- ( ph -> Q e. ( SubGrp ` U ) ) |
| 67 |
47
|
lsmlub |
|- ( ( ( ._|_ ` ( L ` E ) ) e. ( SubGrp ` U ) /\ ( ._|_ ` ( L ` G ) ) e. ( SubGrp ` U ) /\ Q e. ( SubGrp ` U ) ) -> ( ( ( ._|_ ` ( L ` E ) ) C_ Q /\ ( ._|_ ` ( L ` G ) ) C_ Q ) <-> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) C_ Q ) ) |
| 68 |
64 65 66 67
|
syl3anc |
|- ( ph -> ( ( ( ._|_ ` ( L ` E ) ) C_ Q /\ ( ._|_ ` ( L ` G ) ) C_ Q ) <-> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) C_ Q ) ) |
| 69 |
60 61 68
|
mpbi2and |
|- ( ph -> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) C_ Q ) |
| 70 |
59 69
|
eqsstrd |
|- ( ph -> ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) C_ Q ) |
| 71 |
37 70
|
sstrd |
|- ( ph -> ( ._|_ ` ( L ` ( E .+ G ) ) ) C_ Q ) |
| 72 |
11 17
|
lcfls1c |
|- ( ( E .+ G ) e. C <-> ( ( E .+ G ) e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` ( E .+ G ) ) ) C_ Q ) ) |
| 73 |
24 71 72
|
sylanbrc |
|- ( ph -> ( E .+ G ) e. C ) |