| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrslem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrslem1.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrslem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrslem1.s |  |-  S = ( LSubSp ` U ) | 
						
							| 5 |  | lclkrslem1.f |  |-  F = ( LFnl ` U ) | 
						
							| 6 |  | lclkrslem1.l |  |-  L = ( LKer ` U ) | 
						
							| 7 |  | lclkrslem1.d |  |-  D = ( LDual ` U ) | 
						
							| 8 |  | lclkrslem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 9 |  | lclkrslem1.b |  |-  B = ( Base ` R ) | 
						
							| 10 |  | lclkrslem1.t |  |-  .x. = ( .s ` D ) | 
						
							| 11 |  | lclkrslem1.c |  |-  C = { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ Q ) } | 
						
							| 12 |  | lclkrslem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 |  | lclkrslem1.q |  |-  ( ph -> Q e. S ) | 
						
							| 14 |  | lclkrslem1.g |  |-  ( ph -> G e. C ) | 
						
							| 15 |  | lclkrslem2.p |  |-  .+ = ( +g ` D ) | 
						
							| 16 |  | lclkrslem2.e |  |-  ( ph -> E e. C ) | 
						
							| 17 |  | eqid |  |-  { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } | 
						
							| 18 | 11 17 | lcfls1c |  |-  ( E e. C <-> ( E e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` E ) ) C_ Q ) ) | 
						
							| 19 | 18 | simplbi |  |-  ( E e. C -> E e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) | 
						
							| 20 | 16 19 | syl |  |-  ( ph -> E e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) | 
						
							| 21 | 11 17 | lcfls1c |  |-  ( G e. C <-> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) | 
						
							| 22 | 21 | simplbi |  |-  ( G e. C -> G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) | 
						
							| 23 | 14 22 | syl |  |-  ( ph -> G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) | 
						
							| 24 | 1 2 3 5 6 7 15 17 12 20 23 | lclkrlem2 |  |-  ( ph -> ( E .+ G ) e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) | 
						
							| 25 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 26 | 1 3 12 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 27 | 11 | lcfls1lem |  |-  ( E e. C <-> ( E e. F /\ ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) /\ ( ._|_ ` ( L ` E ) ) C_ Q ) ) | 
						
							| 28 | 16 27 | sylib |  |-  ( ph -> ( E e. F /\ ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) /\ ( ._|_ ` ( L ` E ) ) C_ Q ) ) | 
						
							| 29 | 28 | simp1d |  |-  ( ph -> E e. F ) | 
						
							| 30 | 11 | lcfls1lem |  |-  ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) | 
						
							| 31 | 14 30 | sylib |  |-  ( ph -> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) | 
						
							| 32 | 31 | simp1d |  |-  ( ph -> G e. F ) | 
						
							| 33 | 5 7 15 26 29 32 | ldualvaddcl |  |-  ( ph -> ( E .+ G ) e. F ) | 
						
							| 34 | 25 5 6 26 33 | lkrssv |  |-  ( ph -> ( L ` ( E .+ G ) ) C_ ( Base ` U ) ) | 
						
							| 35 | 5 6 7 15 26 29 32 | lkrin |  |-  ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 36 | 1 3 25 2 | dochss |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( L ` ( E .+ G ) ) C_ ( Base ` U ) /\ ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) C_ ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) ) | 
						
							| 37 | 12 34 35 36 | syl3anc |  |-  ( ph -> ( ._|_ ` ( L ` ( E .+ G ) ) ) C_ ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) ) | 
						
							| 38 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 39 |  | eqid |  |-  ( ( joinH ` K ) ` W ) = ( ( joinH ` K ) ` W ) | 
						
							| 40 | 28 | simp2d |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) ) | 
						
							| 41 | 1 38 2 3 5 6 12 29 | lcfl5a |  |-  ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) <-> ( L ` E ) e. ran ( ( DIsoH ` K ) ` W ) ) ) | 
						
							| 42 | 40 41 | mpbid |  |-  ( ph -> ( L ` E ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 43 | 31 | simp2d |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) | 
						
							| 44 | 1 38 2 3 5 6 12 32 | lcfl5a |  |-  ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> ( L ` G ) e. ran ( ( DIsoH ` K ) ` W ) ) ) | 
						
							| 45 | 43 44 | mpbid |  |-  ( ph -> ( L ` G ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 46 | 1 38 3 25 2 39 12 42 45 | dochdmm1 |  |-  ( ph -> ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) = ( ( ._|_ ` ( L ` E ) ) ( ( joinH ` K ) ` W ) ( ._|_ ` ( L ` G ) ) ) ) | 
						
							| 47 |  | eqid |  |-  ( LSSum ` U ) = ( LSSum ` U ) | 
						
							| 48 | 25 5 6 26 29 | lkrssv |  |-  ( ph -> ( L ` E ) C_ ( Base ` U ) ) | 
						
							| 49 | 1 38 3 25 2 | dochcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( L ` E ) C_ ( Base ` U ) ) -> ( ._|_ ` ( L ` E ) ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 50 | 12 48 49 | syl2anc |  |-  ( ph -> ( ._|_ ` ( L ` E ) ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 51 | 1 38 2 3 47 5 6 12 50 32 | dochkrsm |  |-  ( ph -> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 52 | 1 3 25 4 2 | dochlss |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( L ` E ) C_ ( Base ` U ) ) -> ( ._|_ ` ( L ` E ) ) e. S ) | 
						
							| 53 | 12 48 52 | syl2anc |  |-  ( ph -> ( ._|_ ` ( L ` E ) ) e. S ) | 
						
							| 54 | 25 5 6 26 32 | lkrssv |  |-  ( ph -> ( L ` G ) C_ ( Base ` U ) ) | 
						
							| 55 | 1 3 25 4 2 | dochlss |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( L ` G ) C_ ( Base ` U ) ) -> ( ._|_ ` ( L ` G ) ) e. S ) | 
						
							| 56 | 12 54 55 | syl2anc |  |-  ( ph -> ( ._|_ ` ( L ` G ) ) e. S ) | 
						
							| 57 | 1 3 25 4 47 38 39 12 53 56 | djhlsmcl |  |-  ( ph -> ( ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) e. ran ( ( DIsoH ` K ) ` W ) <-> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) = ( ( ._|_ ` ( L ` E ) ) ( ( joinH ` K ) ` W ) ( ._|_ ` ( L ` G ) ) ) ) ) | 
						
							| 58 | 51 57 | mpbid |  |-  ( ph -> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) = ( ( ._|_ ` ( L ` E ) ) ( ( joinH ` K ) ` W ) ( ._|_ ` ( L ` G ) ) ) ) | 
						
							| 59 | 46 58 | eqtr4d |  |-  ( ph -> ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) = ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) ) | 
						
							| 60 | 28 | simp3d |  |-  ( ph -> ( ._|_ ` ( L ` E ) ) C_ Q ) | 
						
							| 61 | 31 | simp3d |  |-  ( ph -> ( ._|_ ` ( L ` G ) ) C_ Q ) | 
						
							| 62 | 4 | lsssssubg |  |-  ( U e. LMod -> S C_ ( SubGrp ` U ) ) | 
						
							| 63 | 26 62 | syl |  |-  ( ph -> S C_ ( SubGrp ` U ) ) | 
						
							| 64 | 63 53 | sseldd |  |-  ( ph -> ( ._|_ ` ( L ` E ) ) e. ( SubGrp ` U ) ) | 
						
							| 65 | 63 56 | sseldd |  |-  ( ph -> ( ._|_ ` ( L ` G ) ) e. ( SubGrp ` U ) ) | 
						
							| 66 | 63 13 | sseldd |  |-  ( ph -> Q e. ( SubGrp ` U ) ) | 
						
							| 67 | 47 | lsmlub |  |-  ( ( ( ._|_ ` ( L ` E ) ) e. ( SubGrp ` U ) /\ ( ._|_ ` ( L ` G ) ) e. ( SubGrp ` U ) /\ Q e. ( SubGrp ` U ) ) -> ( ( ( ._|_ ` ( L ` E ) ) C_ Q /\ ( ._|_ ` ( L ` G ) ) C_ Q ) <-> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) C_ Q ) ) | 
						
							| 68 | 64 65 66 67 | syl3anc |  |-  ( ph -> ( ( ( ._|_ ` ( L ` E ) ) C_ Q /\ ( ._|_ ` ( L ` G ) ) C_ Q ) <-> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) C_ Q ) ) | 
						
							| 69 | 60 61 68 | mpbi2and |  |-  ( ph -> ( ( ._|_ ` ( L ` E ) ) ( LSSum ` U ) ( ._|_ ` ( L ` G ) ) ) C_ Q ) | 
						
							| 70 | 59 69 | eqsstrd |  |-  ( ph -> ( ._|_ ` ( ( L ` E ) i^i ( L ` G ) ) ) C_ Q ) | 
						
							| 71 | 37 70 | sstrd |  |-  ( ph -> ( ._|_ ` ( L ` ( E .+ G ) ) ) C_ Q ) | 
						
							| 72 | 11 17 | lcfls1c |  |-  ( ( E .+ G ) e. C <-> ( ( E .+ G ) e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` ( E .+ G ) ) ) C_ Q ) ) | 
						
							| 73 | 24 71 72 | sylanbrc |  |-  ( ph -> ( E .+ G ) e. C ) |