Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrslem1.h |
|
2 |
|
lclkrslem1.o |
|
3 |
|
lclkrslem1.u |
|
4 |
|
lclkrslem1.s |
|
5 |
|
lclkrslem1.f |
|
6 |
|
lclkrslem1.l |
|
7 |
|
lclkrslem1.d |
|
8 |
|
lclkrslem1.r |
|
9 |
|
lclkrslem1.b |
|
10 |
|
lclkrslem1.t |
|
11 |
|
lclkrslem1.c |
|
12 |
|
lclkrslem1.k |
|
13 |
|
lclkrslem1.q |
|
14 |
|
lclkrslem1.g |
|
15 |
|
lclkrslem2.p |
|
16 |
|
lclkrslem2.e |
|
17 |
|
eqid |
|
18 |
11 17
|
lcfls1c |
|
19 |
18
|
simplbi |
|
20 |
16 19
|
syl |
|
21 |
11 17
|
lcfls1c |
|
22 |
21
|
simplbi |
|
23 |
14 22
|
syl |
|
24 |
1 2 3 5 6 7 15 17 12 20 23
|
lclkrlem2 |
|
25 |
|
eqid |
|
26 |
1 3 12
|
dvhlmod |
|
27 |
11
|
lcfls1lem |
|
28 |
16 27
|
sylib |
|
29 |
28
|
simp1d |
|
30 |
11
|
lcfls1lem |
|
31 |
14 30
|
sylib |
|
32 |
31
|
simp1d |
|
33 |
5 7 15 26 29 32
|
ldualvaddcl |
|
34 |
25 5 6 26 33
|
lkrssv |
|
35 |
5 6 7 15 26 29 32
|
lkrin |
|
36 |
1 3 25 2
|
dochss |
|
37 |
12 34 35 36
|
syl3anc |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
28
|
simp2d |
|
41 |
1 38 2 3 5 6 12 29
|
lcfl5a |
|
42 |
40 41
|
mpbid |
|
43 |
31
|
simp2d |
|
44 |
1 38 2 3 5 6 12 32
|
lcfl5a |
|
45 |
43 44
|
mpbid |
|
46 |
1 38 3 25 2 39 12 42 45
|
dochdmm1 |
|
47 |
|
eqid |
|
48 |
25 5 6 26 29
|
lkrssv |
|
49 |
1 38 3 25 2
|
dochcl |
|
50 |
12 48 49
|
syl2anc |
|
51 |
1 38 2 3 47 5 6 12 50 32
|
dochkrsm |
|
52 |
1 3 25 4 2
|
dochlss |
|
53 |
12 48 52
|
syl2anc |
|
54 |
25 5 6 26 32
|
lkrssv |
|
55 |
1 3 25 4 2
|
dochlss |
|
56 |
12 54 55
|
syl2anc |
|
57 |
1 3 25 4 47 38 39 12 53 56
|
djhlsmcl |
|
58 |
51 57
|
mpbid |
|
59 |
46 58
|
eqtr4d |
|
60 |
28
|
simp3d |
|
61 |
31
|
simp3d |
|
62 |
4
|
lsssssubg |
|
63 |
26 62
|
syl |
|
64 |
63 53
|
sseldd |
|
65 |
63 56
|
sseldd |
|
66 |
63 13
|
sseldd |
|
67 |
47
|
lsmlub |
|
68 |
64 65 66 67
|
syl3anc |
|
69 |
60 61 68
|
mpbi2and |
|
70 |
59 69
|
eqsstrd |
|
71 |
37 70
|
sstrd |
|
72 |
11 17
|
lcfls1c |
|
73 |
24 71 72
|
sylanbrc |
|