Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace R is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr a special case of this? (Contributed by NM, 29-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrs.h | |
|
lclkrs.o | |
||
lclkrs.u | |
||
lclkrs.s | |
||
lclkrs.f | |
||
lclkrs.l | |
||
lclkrs.d | |
||
lclkrs.t | |
||
lclkrs.c | |
||
lclkrs.k | |
||
lclkrs.r | |
||
Assertion | lclkrs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrs.h | |
|
2 | lclkrs.o | |
|
3 | lclkrs.u | |
|
4 | lclkrs.s | |
|
5 | lclkrs.f | |
|
6 | lclkrs.l | |
|
7 | lclkrs.d | |
|
8 | lclkrs.t | |
|
9 | lclkrs.c | |
|
10 | lclkrs.k | |
|
11 | lclkrs.r | |
|
12 | ssrab2 | |
|
13 | 12 | a1i | |
14 | 9 | a1i | |
15 | eqid | |
|
16 | 1 3 10 | dvhlmod | |
17 | 5 7 15 16 | ldualvbase | |
18 | 13 14 17 | 3sstr4d | |
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 19 20 21 5 | lfl0f | |
23 | 16 22 | syl | |
24 | 1 3 2 21 10 | dochoc1 | |
25 | eqidd | |
|
26 | 19 20 21 5 6 | lkr0f | |
27 | 16 23 26 | syl2anc | |
28 | 25 27 | mpbird | |
29 | 28 | fveq2d | |
30 | 29 | fveq2d | |
31 | 24 30 28 | 3eqtr4d | |
32 | eqid | |
|
33 | 1 3 2 21 32 | doch1 | |
34 | 10 33 | syl | |
35 | 29 34 | eqtrd | |
36 | 32 4 | lss0ss | |
37 | 16 11 36 | syl2anc | |
38 | 35 37 | eqsstrd | |
39 | 9 | lcfls1lem | |
40 | 23 31 38 39 | syl3anbrc | |
41 | 40 | ne0d | |
42 | eqid | |
|
43 | eqid | |
|
44 | 10 | adantr | |
45 | 11 | adantr | |
46 | simpr3 | |
|
47 | eqid | |
|
48 | simpr2 | |
|
49 | simpr1 | |
|
50 | eqid | |
|
51 | eqid | |
|
52 | 19 42 7 50 51 16 | ldualsbase | |
53 | 52 | adantr | |
54 | 49 53 | eleqtrd | |
55 | 1 2 3 4 5 6 7 19 42 43 9 44 45 48 54 | lclkrslem1 | |
56 | 1 2 3 4 5 6 7 19 42 43 9 44 45 46 47 55 | lclkrslem2 | |
57 | 56 | ralrimivvva | |
58 | 50 51 15 47 43 8 | islss | |
59 | 18 41 57 58 | syl3anbrc | |