Metamath Proof Explorer


Theorem lclkrs

Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace R is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr a special case of this? (Contributed by NM, 29-Jan-2015)

Ref Expression
Hypotheses lclkrs.h H=LHypK
lclkrs.o ˙=ocHKW
lclkrs.u U=DVecHKW
lclkrs.s S=LSubSpU
lclkrs.f F=LFnlU
lclkrs.l L=LKerU
lclkrs.d D=LDualU
lclkrs.t T=LSubSpD
lclkrs.c C=fF|˙˙Lf=Lf˙LfR
lclkrs.k φKHLWH
lclkrs.r φRS
Assertion lclkrs φCT

Proof

Step Hyp Ref Expression
1 lclkrs.h H=LHypK
2 lclkrs.o ˙=ocHKW
3 lclkrs.u U=DVecHKW
4 lclkrs.s S=LSubSpU
5 lclkrs.f F=LFnlU
6 lclkrs.l L=LKerU
7 lclkrs.d D=LDualU
8 lclkrs.t T=LSubSpD
9 lclkrs.c C=fF|˙˙Lf=Lf˙LfR
10 lclkrs.k φKHLWH
11 lclkrs.r φRS
12 ssrab2 fF|˙˙Lf=Lf˙LfRF
13 12 a1i φfF|˙˙Lf=Lf˙LfRF
14 9 a1i φC=fF|˙˙Lf=Lf˙LfR
15 eqid BaseD=BaseD
16 1 3 10 dvhlmod φULMod
17 5 7 15 16 ldualvbase φBaseD=F
18 13 14 17 3sstr4d φCBaseD
19 eqid ScalarU=ScalarU
20 eqid 0ScalarU=0ScalarU
21 eqid BaseU=BaseU
22 19 20 21 5 lfl0f ULModBaseU×0ScalarUF
23 16 22 syl φBaseU×0ScalarUF
24 1 3 2 21 10 dochoc1 φ˙˙BaseU=BaseU
25 eqidd φBaseU×0ScalarU=BaseU×0ScalarU
26 19 20 21 5 6 lkr0f ULModBaseU×0ScalarUFLBaseU×0ScalarU=BaseUBaseU×0ScalarU=BaseU×0ScalarU
27 16 23 26 syl2anc φLBaseU×0ScalarU=BaseUBaseU×0ScalarU=BaseU×0ScalarU
28 25 27 mpbird φLBaseU×0ScalarU=BaseU
29 28 fveq2d φ˙LBaseU×0ScalarU=˙BaseU
30 29 fveq2d φ˙˙LBaseU×0ScalarU=˙˙BaseU
31 24 30 28 3eqtr4d φ˙˙LBaseU×0ScalarU=LBaseU×0ScalarU
32 eqid 0U=0U
33 1 3 2 21 32 doch1 KHLWH˙BaseU=0U
34 10 33 syl φ˙BaseU=0U
35 29 34 eqtrd φ˙LBaseU×0ScalarU=0U
36 32 4 lss0ss ULModRS0UR
37 16 11 36 syl2anc φ0UR
38 35 37 eqsstrd φ˙LBaseU×0ScalarUR
39 9 lcfls1lem BaseU×0ScalarUCBaseU×0ScalarUF˙˙LBaseU×0ScalarU=LBaseU×0ScalarU˙LBaseU×0ScalarUR
40 23 31 38 39 syl3anbrc φBaseU×0ScalarUC
41 40 ne0d φC
42 eqid BaseScalarU=BaseScalarU
43 eqid D=D
44 10 adantr φxBaseScalarDaCbCKHLWH
45 11 adantr φxBaseScalarDaCbCRS
46 simpr3 φxBaseScalarDaCbCbC
47 eqid +D=+D
48 simpr2 φxBaseScalarDaCbCaC
49 simpr1 φxBaseScalarDaCbCxBaseScalarD
50 eqid ScalarD=ScalarD
51 eqid BaseScalarD=BaseScalarD
52 19 42 7 50 51 16 ldualsbase φBaseScalarD=BaseScalarU
53 52 adantr φxBaseScalarDaCbCBaseScalarD=BaseScalarU
54 49 53 eleqtrd φxBaseScalarDaCbCxBaseScalarU
55 1 2 3 4 5 6 7 19 42 43 9 44 45 48 54 lclkrslem1 φxBaseScalarDaCbCxDaC
56 1 2 3 4 5 6 7 19 42 43 9 44 45 46 47 55 lclkrslem2 φxBaseScalarDaCbCxDa+DbC
57 56 ralrimivvva φxBaseScalarDaCbCxDa+DbC
58 50 51 15 47 43 8 islss CTCBaseDCxBaseScalarDaCbCxDa+DbC
59 18 41 57 58 syl3anbrc φCT