Metamath Proof Explorer


Theorem lclkrslem1

Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace Q is closed under scalar product. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses lclkrslem1.h H = LHyp K
lclkrslem1.o ˙ = ocH K W
lclkrslem1.u U = DVecH K W
lclkrslem1.s S = LSubSp U
lclkrslem1.f F = LFnl U
lclkrslem1.l L = LKer U
lclkrslem1.d D = LDual U
lclkrslem1.r R = Scalar U
lclkrslem1.b B = Base R
lclkrslem1.t · ˙ = D
lclkrslem1.c C = f F | ˙ ˙ L f = L f ˙ L f Q
lclkrslem1.k φ K HL W H
lclkrslem1.q φ Q S
lclkrslem1.g φ G C
lclkrslem1.x φ X B
Assertion lclkrslem1 φ X · ˙ G C

Proof

Step Hyp Ref Expression
1 lclkrslem1.h H = LHyp K
2 lclkrslem1.o ˙ = ocH K W
3 lclkrslem1.u U = DVecH K W
4 lclkrslem1.s S = LSubSp U
5 lclkrslem1.f F = LFnl U
6 lclkrslem1.l L = LKer U
7 lclkrslem1.d D = LDual U
8 lclkrslem1.r R = Scalar U
9 lclkrslem1.b B = Base R
10 lclkrslem1.t · ˙ = D
11 lclkrslem1.c C = f F | ˙ ˙ L f = L f ˙ L f Q
12 lclkrslem1.k φ K HL W H
13 lclkrslem1.q φ Q S
14 lclkrslem1.g φ G C
15 lclkrslem1.x φ X B
16 eqid f F | ˙ ˙ L f = L f = f F | ˙ ˙ L f = L f
17 11 16 lcfls1c G C G f F | ˙ ˙ L f = L f ˙ L G Q
18 17 simplbi G C G f F | ˙ ˙ L f = L f
19 14 18 syl φ G f F | ˙ ˙ L f = L f
20 1 2 3 5 6 7 8 9 10 16 12 15 19 lclkrlem1 φ X · ˙ G f F | ˙ ˙ L f = L f
21 eqid Base U = Base U
22 1 3 12 dvhlmod φ U LMod
23 11 lcfls1lem G C G F ˙ ˙ L G = L G ˙ L G Q
24 14 23 sylib φ G F ˙ ˙ L G = L G ˙ L G Q
25 24 simp1d φ G F
26 5 8 9 7 10 22 15 25 ldualvscl φ X · ˙ G F
27 21 5 6 22 26 lkrssv φ L X · ˙ G Base U
28 1 3 12 dvhlvec φ U LVec
29 8 9 5 6 7 10 28 25 15 lkrss φ L G L X · ˙ G
30 1 3 21 2 dochss K HL W H L X · ˙ G Base U L G L X · ˙ G ˙ L X · ˙ G ˙ L G
31 12 27 29 30 syl3anc φ ˙ L X · ˙ G ˙ L G
32 24 simp3d φ ˙ L G Q
33 31 32 sstrd φ ˙ L X · ˙ G Q
34 11 16 lcfls1c X · ˙ G C X · ˙ G f F | ˙ ˙ L f = L f ˙ L X · ˙ G Q
35 20 33 34 sylanbrc φ X · ˙ G C