| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrslem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrslem1.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrslem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrslem1.s |  |-  S = ( LSubSp ` U ) | 
						
							| 5 |  | lclkrslem1.f |  |-  F = ( LFnl ` U ) | 
						
							| 6 |  | lclkrslem1.l |  |-  L = ( LKer ` U ) | 
						
							| 7 |  | lclkrslem1.d |  |-  D = ( LDual ` U ) | 
						
							| 8 |  | lclkrslem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 9 |  | lclkrslem1.b |  |-  B = ( Base ` R ) | 
						
							| 10 |  | lclkrslem1.t |  |-  .x. = ( .s ` D ) | 
						
							| 11 |  | lclkrslem1.c |  |-  C = { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ Q ) } | 
						
							| 12 |  | lclkrslem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 |  | lclkrslem1.q |  |-  ( ph -> Q e. S ) | 
						
							| 14 |  | lclkrslem1.g |  |-  ( ph -> G e. C ) | 
						
							| 15 |  | lclkrslem1.x |  |-  ( ph -> X e. B ) | 
						
							| 16 |  | eqid |  |-  { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } | 
						
							| 17 | 11 16 | lcfls1c |  |-  ( G e. C <-> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) | 
						
							| 18 | 17 | simplbi |  |-  ( G e. C -> G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) | 
						
							| 19 | 14 18 | syl |  |-  ( ph -> G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) | 
						
							| 20 | 1 2 3 5 6 7 8 9 10 16 12 15 19 | lclkrlem1 |  |-  ( ph -> ( X .x. G ) e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) | 
						
							| 21 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 22 | 1 3 12 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 23 | 11 | lcfls1lem |  |-  ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) | 
						
							| 24 | 14 23 | sylib |  |-  ( ph -> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) | 
						
							| 25 | 24 | simp1d |  |-  ( ph -> G e. F ) | 
						
							| 26 | 5 8 9 7 10 22 15 25 | ldualvscl |  |-  ( ph -> ( X .x. G ) e. F ) | 
						
							| 27 | 21 5 6 22 26 | lkrssv |  |-  ( ph -> ( L ` ( X .x. G ) ) C_ ( Base ` U ) ) | 
						
							| 28 | 1 3 12 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 29 | 8 9 5 6 7 10 28 25 15 | lkrss |  |-  ( ph -> ( L ` G ) C_ ( L ` ( X .x. G ) ) ) | 
						
							| 30 | 1 3 21 2 | dochss |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( L ` ( X .x. G ) ) C_ ( Base ` U ) /\ ( L ` G ) C_ ( L ` ( X .x. G ) ) ) -> ( ._|_ ` ( L ` ( X .x. G ) ) ) C_ ( ._|_ ` ( L ` G ) ) ) | 
						
							| 31 | 12 27 29 30 | syl3anc |  |-  ( ph -> ( ._|_ ` ( L ` ( X .x. G ) ) ) C_ ( ._|_ ` ( L ` G ) ) ) | 
						
							| 32 | 24 | simp3d |  |-  ( ph -> ( ._|_ ` ( L ` G ) ) C_ Q ) | 
						
							| 33 | 31 32 | sstrd |  |-  ( ph -> ( ._|_ ` ( L ` ( X .x. G ) ) ) C_ Q ) | 
						
							| 34 | 11 16 | lcfls1c |  |-  ( ( X .x. G ) e. C <-> ( ( X .x. G ) e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` ( X .x. G ) ) ) C_ Q ) ) | 
						
							| 35 | 20 33 34 | sylanbrc |  |-  ( ph -> ( X .x. G ) e. C ) |