Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrslem1.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrslem1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrslem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrslem1.s |
|- S = ( LSubSp ` U ) |
5 |
|
lclkrslem1.f |
|- F = ( LFnl ` U ) |
6 |
|
lclkrslem1.l |
|- L = ( LKer ` U ) |
7 |
|
lclkrslem1.d |
|- D = ( LDual ` U ) |
8 |
|
lclkrslem1.r |
|- R = ( Scalar ` U ) |
9 |
|
lclkrslem1.b |
|- B = ( Base ` R ) |
10 |
|
lclkrslem1.t |
|- .x. = ( .s ` D ) |
11 |
|
lclkrslem1.c |
|- C = { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ Q ) } |
12 |
|
lclkrslem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
13 |
|
lclkrslem1.q |
|- ( ph -> Q e. S ) |
14 |
|
lclkrslem1.g |
|- ( ph -> G e. C ) |
15 |
|
lclkrslem1.x |
|- ( ph -> X e. B ) |
16 |
|
eqid |
|- { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
17 |
11 16
|
lcfls1c |
|- ( G e. C <-> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) |
18 |
17
|
simplbi |
|- ( G e. C -> G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
19 |
14 18
|
syl |
|- ( ph -> G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
20 |
1 2 3 5 6 7 8 9 10 16 12 15 19
|
lclkrlem1 |
|- ( ph -> ( X .x. G ) e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
21 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
22 |
1 3 12
|
dvhlmod |
|- ( ph -> U e. LMod ) |
23 |
11
|
lcfls1lem |
|- ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) |
24 |
14 23
|
sylib |
|- ( ph -> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) |
25 |
24
|
simp1d |
|- ( ph -> G e. F ) |
26 |
5 8 9 7 10 22 15 25
|
ldualvscl |
|- ( ph -> ( X .x. G ) e. F ) |
27 |
21 5 6 22 26
|
lkrssv |
|- ( ph -> ( L ` ( X .x. G ) ) C_ ( Base ` U ) ) |
28 |
1 3 12
|
dvhlvec |
|- ( ph -> U e. LVec ) |
29 |
8 9 5 6 7 10 28 25 15
|
lkrss |
|- ( ph -> ( L ` G ) C_ ( L ` ( X .x. G ) ) ) |
30 |
1 3 21 2
|
dochss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` ( X .x. G ) ) C_ ( Base ` U ) /\ ( L ` G ) C_ ( L ` ( X .x. G ) ) ) -> ( ._|_ ` ( L ` ( X .x. G ) ) ) C_ ( ._|_ ` ( L ` G ) ) ) |
31 |
12 27 29 30
|
syl3anc |
|- ( ph -> ( ._|_ ` ( L ` ( X .x. G ) ) ) C_ ( ._|_ ` ( L ` G ) ) ) |
32 |
24
|
simp3d |
|- ( ph -> ( ._|_ ` ( L ` G ) ) C_ Q ) |
33 |
31 32
|
sstrd |
|- ( ph -> ( ._|_ ` ( L ` ( X .x. G ) ) ) C_ Q ) |
34 |
11 16
|
lcfls1c |
|- ( ( X .x. G ) e. C <-> ( ( X .x. G ) e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } /\ ( ._|_ ` ( L ` ( X .x. G ) ) ) C_ Q ) ) |
35 |
20 33 34
|
sylanbrc |
|- ( ph -> ( X .x. G ) e. C ) |