Metamath Proof Explorer


Theorem lclkrs2

Description: The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace Q is a subspace of the dual space containing functionals with closed kernels. Note that R is the value given by mapdval . (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses lclkrs2.h H=LHypK
lclkrs2.o ˙=ocHKW
lclkrs2.u U=DVecHKW
lclkrs2.s S=LSubSpU
lclkrs2.f F=LFnlU
lclkrs2.l L=LKerU
lclkrs2.d D=LDualU
lclkrs2.t T=LSubSpD
lclkrs2.c C=fF|˙˙Lf=Lf
lclkrs2.r R=gF|˙˙Lg=Lg˙LgQ
lclkrs2.k φKHLWH
lclkrs2.q φQS
Assertion lclkrs2 φRTRC

Proof

Step Hyp Ref Expression
1 lclkrs2.h H=LHypK
2 lclkrs2.o ˙=ocHKW
3 lclkrs2.u U=DVecHKW
4 lclkrs2.s S=LSubSpU
5 lclkrs2.f F=LFnlU
6 lclkrs2.l L=LKerU
7 lclkrs2.d D=LDualU
8 lclkrs2.t T=LSubSpD
9 lclkrs2.c C=fF|˙˙Lf=Lf
10 lclkrs2.r R=gF|˙˙Lg=Lg˙LgQ
11 lclkrs2.k φKHLWH
12 lclkrs2.q φQS
13 1 2 3 4 5 6 7 8 10 11 12 lclkrs φRT
14 simpl ˙˙Lg=Lg˙LgQ˙˙Lg=Lg
15 14 a1i gF˙˙Lg=Lg˙LgQ˙˙Lg=Lg
16 15 ss2rabi gF|˙˙Lg=Lg˙LgQgF|˙˙Lg=Lg
17 fveq2 f=gLf=Lg
18 17 fveq2d f=g˙Lf=˙Lg
19 18 fveq2d f=g˙˙Lf=˙˙Lg
20 19 17 eqeq12d f=g˙˙Lf=Lf˙˙Lg=Lg
21 20 cbvrabv fF|˙˙Lf=Lf=gF|˙˙Lg=Lg
22 9 21 eqtri C=gF|˙˙Lg=Lg
23 16 10 22 3sstr4i RC
24 13 23 jctir φRTRC