Metamath Proof Explorer


Theorem lclkrs2

Description: The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace Q is a subspace of the dual space containing functionals with closed kernels. Note that R is the value given by mapdval . (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses lclkrs2.h H = LHyp K
lclkrs2.o ˙ = ocH K W
lclkrs2.u U = DVecH K W
lclkrs2.s S = LSubSp U
lclkrs2.f F = LFnl U
lclkrs2.l L = LKer U
lclkrs2.d D = LDual U
lclkrs2.t T = LSubSp D
lclkrs2.c C = f F | ˙ ˙ L f = L f
lclkrs2.r R = g F | ˙ ˙ L g = L g ˙ L g Q
lclkrs2.k φ K HL W H
lclkrs2.q φ Q S
Assertion lclkrs2 φ R T R C

Proof

Step Hyp Ref Expression
1 lclkrs2.h H = LHyp K
2 lclkrs2.o ˙ = ocH K W
3 lclkrs2.u U = DVecH K W
4 lclkrs2.s S = LSubSp U
5 lclkrs2.f F = LFnl U
6 lclkrs2.l L = LKer U
7 lclkrs2.d D = LDual U
8 lclkrs2.t T = LSubSp D
9 lclkrs2.c C = f F | ˙ ˙ L f = L f
10 lclkrs2.r R = g F | ˙ ˙ L g = L g ˙ L g Q
11 lclkrs2.k φ K HL W H
12 lclkrs2.q φ Q S
13 1 2 3 4 5 6 7 8 10 11 12 lclkrs φ R T
14 simpl ˙ ˙ L g = L g ˙ L g Q ˙ ˙ L g = L g
15 14 a1i g F ˙ ˙ L g = L g ˙ L g Q ˙ ˙ L g = L g
16 15 ss2rabi g F | ˙ ˙ L g = L g ˙ L g Q g F | ˙ ˙ L g = L g
17 fveq2 f = g L f = L g
18 17 fveq2d f = g ˙ L f = ˙ L g
19 18 fveq2d f = g ˙ ˙ L f = ˙ ˙ L g
20 19 17 eqeq12d f = g ˙ ˙ L f = L f ˙ ˙ L g = L g
21 20 cbvrabv f F | ˙ ˙ L f = L f = g F | ˙ ˙ L g = L g
22 9 21 eqtri C = g F | ˙ ˙ L g = L g
23 16 10 22 3sstr4i R C
24 13 23 jctir φ R T R C