Metamath Proof Explorer


Theorem mapdval

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses mapdval.h H = LHyp K
mapdval.u U = DVecH K W
mapdval.s S = LSubSp U
mapdval.f F = LFnl U
mapdval.l L = LKer U
mapdval.o O = ocH K W
mapdval.m M = mapd K W
mapdval.k φ K X W H
mapdval.t φ T S
Assertion mapdval φ M T = f F | O O L f = L f O L f T

Proof

Step Hyp Ref Expression
1 mapdval.h H = LHyp K
2 mapdval.u U = DVecH K W
3 mapdval.s S = LSubSp U
4 mapdval.f F = LFnl U
5 mapdval.l L = LKer U
6 mapdval.o O = ocH K W
7 mapdval.m M = mapd K W
8 mapdval.k φ K X W H
9 mapdval.t φ T S
10 1 2 3 4 5 6 7 mapdfval K X W H M = s S f F | O O L f = L f O L f s
11 8 10 syl φ M = s S f F | O O L f = L f O L f s
12 11 fveq1d φ M T = s S f F | O O L f = L f O L f s T
13 4 fvexi F V
14 13 rabex f F | O O L f = L f O L f T V
15 sseq2 s = T O L f s O L f T
16 15 anbi2d s = T O O L f = L f O L f s O O L f = L f O L f T
17 16 rabbidv s = T f F | O O L f = L f O L f s = f F | O O L f = L f O L f T
18 eqid s S f F | O O L f = L f O L f s = s S f F | O O L f = L f O L f s
19 17 18 fvmptg T S f F | O O L f = L f O L f T V s S f F | O O L f = L f O L f s T = f F | O O L f = L f O L f T
20 9 14 19 sylancl φ s S f F | O O L f = L f O L f s T = f F | O O L f = L f O L f T
21 12 20 eqtrd φ M T = f F | O O L f = L f O L f T