Metamath Proof Explorer


Theorem mapdvalc

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses mapdval.h H = LHyp K
mapdval.u U = DVecH K W
mapdval.s S = LSubSp U
mapdval.f F = LFnl U
mapdval.l L = LKer U
mapdval.o O = ocH K W
mapdval.m M = mapd K W
mapdval.k φ K X W H
mapdval.t φ T S
mapdvalc.c C = g F | O O L g = L g
Assertion mapdvalc φ M T = f C | O L f T

Proof

Step Hyp Ref Expression
1 mapdval.h H = LHyp K
2 mapdval.u U = DVecH K W
3 mapdval.s S = LSubSp U
4 mapdval.f F = LFnl U
5 mapdval.l L = LKer U
6 mapdval.o O = ocH K W
7 mapdval.m M = mapd K W
8 mapdval.k φ K X W H
9 mapdval.t φ T S
10 mapdvalc.c C = g F | O O L g = L g
11 1 2 3 4 5 6 7 8 9 mapdval φ M T = f F | O O L f = L f O L f T
12 anass f F O O L f = L f O L f T f F O O L f = L f O L f T
13 10 lcfl1lem f C f F O O L f = L f
14 13 anbi1i f C O L f T f F O O L f = L f O L f T
15 14 bicomi f F O O L f = L f O L f T f C O L f T
16 15 a1i φ f F O O L f = L f O L f T f C O L f T
17 12 16 bitr3id φ f F O O L f = L f O L f T f C O L f T
18 17 rabbidva2 φ f F | O O L f = L f O L f T = f C | O L f T
19 11 18 eqtrd φ M T = f C | O L f T