Metamath Proof Explorer


Theorem mapdval2N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval2.h H = LHyp K
mapdval2.u U = DVecH K W
mapdval2.s S = LSubSp U
mapdval2.n N = LSpan U
mapdval2.f F = LFnl U
mapdval2.l L = LKer U
mapdval2.o O = ocH K W
mapdval2.m M = mapd K W
mapdval2.k φ K HL W H
mapdval2.t φ T S
mapdval2.c C = g F | O O L g = L g
Assertion mapdval2N φ M T = f C | v T O L f = N v

Proof

Step Hyp Ref Expression
1 mapdval2.h H = LHyp K
2 mapdval2.u U = DVecH K W
3 mapdval2.s S = LSubSp U
4 mapdval2.n N = LSpan U
5 mapdval2.f F = LFnl U
6 mapdval2.l L = LKer U
7 mapdval2.o O = ocH K W
8 mapdval2.m M = mapd K W
9 mapdval2.k φ K HL W H
10 mapdval2.t φ T S
11 mapdval2.c C = g F | O O L g = L g
12 1 2 3 5 6 7 8 9 10 11 mapdvalc φ M T = f C | O L f T
13 1 2 9 dvhlmod φ U LMod
14 13 ad3antrrr φ f C O L f LSAtoms U O L f T U LMod
15 simplr φ f C O L f LSAtoms U O L f T O L f LSAtoms U
16 eqid Base U = Base U
17 eqid LSAtoms U = LSAtoms U
18 16 4 17 islsati U LMod O L f LSAtoms U v Base U O L f = N v
19 14 15 18 syl2anc φ f C O L f LSAtoms U O L f T v Base U O L f = N v
20 simprr φ f C O L f LSAtoms U O L f T v Base U O L f = N v O L f = N v
21 simplr φ f C O L f LSAtoms U O L f T v Base U O L f = N v O L f T
22 20 21 eqsstrrd φ f C O L f LSAtoms U O L f T v Base U O L f = N v N v T
23 13 adantr φ f C U LMod
24 23 ad3antrrr φ f C O L f LSAtoms U O L f T v Base U O L f = N v U LMod
25 10 adantr φ f C T S
26 25 ad3antrrr φ f C O L f LSAtoms U O L f T v Base U O L f = N v T S
27 simprl φ f C O L f LSAtoms U O L f T v Base U O L f = N v v Base U
28 16 3 4 24 26 27 lspsnel5 φ f C O L f LSAtoms U O L f T v Base U O L f = N v v T N v T
29 22 28 mpbird φ f C O L f LSAtoms U O L f T v Base U O L f = N v v T
30 19 29 20 reximssdv φ f C O L f LSAtoms U O L f T v T O L f = N v
31 30 ex φ f C O L f LSAtoms U O L f T v T O L f = N v
32 eqid 0 U = 0 U
33 32 3 lss0cl U LMod T S 0 U T
34 13 10 33 syl2anc φ 0 U T
35 34 adantr φ O L f = 0 U 0 U T
36 simpr φ O L f = 0 U O L f = 0 U
37 13 adantr φ O L f = 0 U U LMod
38 32 4 lspsn0 U LMod N 0 U = 0 U
39 37 38 syl φ O L f = 0 U N 0 U = 0 U
40 36 39 eqtr4d φ O L f = 0 U O L f = N 0 U
41 sneq v = 0 U v = 0 U
42 41 fveq2d v = 0 U N v = N 0 U
43 42 rspceeqv 0 U T O L f = N 0 U v T O L f = N v
44 35 40 43 syl2anc φ O L f = 0 U v T O L f = N v
45 44 adantlr φ f C O L f = 0 U v T O L f = N v
46 45 a1d φ f C O L f = 0 U O L f T v T O L f = N v
47 9 adantr φ f C K HL W H
48 11 lcfl1lem f C f F O O L f = L f
49 48 simplbi f C f F
50 49 adantl φ f C f F
51 1 7 2 32 17 5 6 47 50 dochsat0 φ f C O L f LSAtoms U O L f = 0 U
52 31 46 51 mpjaodan φ f C O L f T v T O L f = N v
53 simp3 φ f C v T O L f = N v O L f = N v
54 23 3ad2ant1 φ f C v T O L f = N v U LMod
55 25 3ad2ant1 φ f C v T O L f = N v T S
56 simp2 φ f C v T O L f = N v v T
57 3 4 54 55 56 lspsnel5a φ f C v T O L f = N v N v T
58 53 57 eqsstrd φ f C v T O L f = N v O L f T
59 58 rexlimdv3a φ f C v T O L f = N v O L f T
60 52 59 impbid φ f C O L f T v T O L f = N v
61 60 rabbidva φ f C | O L f T = f C | v T O L f = N v
62 12 61 eqtrd φ M T = f C | v T O L f = N v