Metamath Proof Explorer


Theorem mapdval3N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval2.h H = LHyp K
mapdval2.u U = DVecH K W
mapdval2.s S = LSubSp U
mapdval2.n N = LSpan U
mapdval2.f F = LFnl U
mapdval2.l L = LKer U
mapdval2.o O = ocH K W
mapdval2.m M = mapd K W
mapdval2.k φ K HL W H
mapdval2.t φ T S
mapdval2.c C = g F | O O L g = L g
Assertion mapdval3N φ M T = v T f C | O L f = N v

Proof

Step Hyp Ref Expression
1 mapdval2.h H = LHyp K
2 mapdval2.u U = DVecH K W
3 mapdval2.s S = LSubSp U
4 mapdval2.n N = LSpan U
5 mapdval2.f F = LFnl U
6 mapdval2.l L = LKer U
7 mapdval2.o O = ocH K W
8 mapdval2.m M = mapd K W
9 mapdval2.k φ K HL W H
10 mapdval2.t φ T S
11 mapdval2.c C = g F | O O L g = L g
12 1 2 3 4 5 6 7 8 9 10 11 mapdval2N φ M T = f C | v T O L f = N v
13 iunrab v T f C | O L f = N v = f C | v T O L f = N v
14 12 13 eqtr4di φ M T = v T f C | O L f = N v