Metamath Proof Explorer


Theorem mapdval4N

Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is C_ C ) 2. The unneeded direction of lcfl8a has awkward E. - add another thm with only one direction of it? 3. Swap O{ v } and Lf ? (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval4.h H=LHypK
mapdval4.u U=DVecHKW
mapdval4.s S=LSubSpU
mapdval4.f F=LFnlU
mapdval4.l L=LKerU
mapdval4.o O=ocHKW
mapdval4.m M=mapdKW
mapdval4.k φKHLWH
mapdval4.t φTS
Assertion mapdval4N φMT=fF|vTOv=Lf

Proof

Step Hyp Ref Expression
1 mapdval4.h H=LHypK
2 mapdval4.u U=DVecHKW
3 mapdval4.s S=LSubSpU
4 mapdval4.f F=LFnlU
5 mapdval4.l L=LKerU
6 mapdval4.o O=ocHKW
7 mapdval4.m M=mapdKW
8 mapdval4.k φKHLWH
9 mapdval4.t φTS
10 eqid LSpanU=LSpanU
11 eqid gF|OOLg=Lg=gF|OOLg=Lg
12 1 2 3 10 4 5 6 7 8 9 11 mapdval2N φMT=fgF|OOLg=Lg|vTOLf=LSpanUv
13 11 lcfl1lem fgF|OOLg=LgfFOOLf=Lf
14 13 anbi1i fgF|OOLg=LgvTOLf=LSpanUvfFOOLf=LfvTOLf=LSpanUv
15 anass fFOOLf=LfvTOLf=LSpanUvfFOOLf=LfvTOLf=LSpanUv
16 14 15 bitri fgF|OOLg=LgvTOLf=LSpanUvfFOOLf=LfvTOLf=LSpanUv
17 r19.42v vTOOLf=LfOLf=LSpanUvOOLf=LfvTOLf=LSpanUv
18 simprr φfFvTOOLf=LfOLf=LSpanUvOLf=LSpanUv
19 18 fveq2d φfFvTOOLf=LfOLf=LSpanUvOOLf=OLSpanUv
20 simprl φfFvTOOLf=LfOLf=LSpanUvOOLf=Lf
21 eqid BaseU=BaseU
22 8 adantr φfFKHLWH
23 22 adantr φfFvTKHLWH
24 23 adantr φfFvTOOLf=LfOLf=LSpanUvKHLWH
25 9 adantr φfFTS
26 21 3 lssel TSvTvBaseU
27 25 26 sylan φfFvTvBaseU
28 27 snssd φfFvTvBaseU
29 28 adantr φfFvTOOLf=LfOLf=LSpanUvvBaseU
30 1 2 6 21 10 24 29 dochocsp φfFvTOOLf=LfOLf=LSpanUvOLSpanUv=Ov
31 19 20 30 3eqtr3rd φfFvTOOLf=LfOLf=LSpanUvOv=Lf
32 27 adantr φfFvTOv=LfvBaseU
33 simpr φfFvTOv=LfOv=Lf
34 33 eqcomd φfFvTOv=LfLf=Ov
35 sneq w=vw=v
36 35 fveq2d w=vOw=Ov
37 36 rspceeqv vBaseULf=OvwBaseULf=Ow
38 32 34 37 syl2anc φfFvTOv=LfwBaseULf=Ow
39 23 adantr φfFvTOv=LfKHLWH
40 simpllr φfFvTOv=LffF
41 1 6 2 21 4 5 39 40 lcfl8a φfFvTOv=LfOOLf=LfwBaseULf=Ow
42 38 41 mpbird φfFvTOv=LfOOLf=Lf
43 1 2 6 21 10 23 27 dochocsn φfFvTOOv=LSpanUv
44 fveq2 Ov=LfOOv=OLf
45 43 44 sylan9req φfFvTOv=LfLSpanUv=OLf
46 45 eqcomd φfFvTOv=LfOLf=LSpanUv
47 42 46 jca φfFvTOv=LfOOLf=LfOLf=LSpanUv
48 31 47 impbida φfFvTOOLf=LfOLf=LSpanUvOv=Lf
49 48 rexbidva φfFvTOOLf=LfOLf=LSpanUvvTOv=Lf
50 17 49 bitr3id φfFOOLf=LfvTOLf=LSpanUvvTOv=Lf
51 50 pm5.32da φfFOOLf=LfvTOLf=LSpanUvfFvTOv=Lf
52 16 51 bitrid φfgF|OOLg=LgvTOLf=LSpanUvfFvTOv=Lf
53 52 rabbidva2 φfgF|OOLg=Lg|vTOLf=LSpanUv=fF|vTOv=Lf
54 12 53 eqtrd φMT=fF|vTOv=Lf