Metamath Proof Explorer


Theorem mapdval4N

Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is C_ C ) 2. The unneeded direction of lcfl8a has awkward E. - add another thm with only one direction of it? 3. Swap O{ v } and Lf ? (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval4.h H = LHyp K
mapdval4.u U = DVecH K W
mapdval4.s S = LSubSp U
mapdval4.f F = LFnl U
mapdval4.l L = LKer U
mapdval4.o O = ocH K W
mapdval4.m M = mapd K W
mapdval4.k φ K HL W H
mapdval4.t φ T S
Assertion mapdval4N φ M T = f F | v T O v = L f

Proof

Step Hyp Ref Expression
1 mapdval4.h H = LHyp K
2 mapdval4.u U = DVecH K W
3 mapdval4.s S = LSubSp U
4 mapdval4.f F = LFnl U
5 mapdval4.l L = LKer U
6 mapdval4.o O = ocH K W
7 mapdval4.m M = mapd K W
8 mapdval4.k φ K HL W H
9 mapdval4.t φ T S
10 eqid LSpan U = LSpan U
11 eqid g F | O O L g = L g = g F | O O L g = L g
12 1 2 3 10 4 5 6 7 8 9 11 mapdval2N φ M T = f g F | O O L g = L g | v T O L f = LSpan U v
13 11 lcfl1lem f g F | O O L g = L g f F O O L f = L f
14 13 anbi1i f g F | O O L g = L g v T O L f = LSpan U v f F O O L f = L f v T O L f = LSpan U v
15 anass f F O O L f = L f v T O L f = LSpan U v f F O O L f = L f v T O L f = LSpan U v
16 14 15 bitri f g F | O O L g = L g v T O L f = LSpan U v f F O O L f = L f v T O L f = LSpan U v
17 r19.42v v T O O L f = L f O L f = LSpan U v O O L f = L f v T O L f = LSpan U v
18 simprr φ f F v T O O L f = L f O L f = LSpan U v O L f = LSpan U v
19 18 fveq2d φ f F v T O O L f = L f O L f = LSpan U v O O L f = O LSpan U v
20 simprl φ f F v T O O L f = L f O L f = LSpan U v O O L f = L f
21 eqid Base U = Base U
22 8 adantr φ f F K HL W H
23 22 adantr φ f F v T K HL W H
24 23 adantr φ f F v T O O L f = L f O L f = LSpan U v K HL W H
25 9 adantr φ f F T S
26 21 3 lssel T S v T v Base U
27 25 26 sylan φ f F v T v Base U
28 27 snssd φ f F v T v Base U
29 28 adantr φ f F v T O O L f = L f O L f = LSpan U v v Base U
30 1 2 6 21 10 24 29 dochocsp φ f F v T O O L f = L f O L f = LSpan U v O LSpan U v = O v
31 19 20 30 3eqtr3rd φ f F v T O O L f = L f O L f = LSpan U v O v = L f
32 27 adantr φ f F v T O v = L f v Base U
33 simpr φ f F v T O v = L f O v = L f
34 33 eqcomd φ f F v T O v = L f L f = O v
35 sneq w = v w = v
36 35 fveq2d w = v O w = O v
37 36 rspceeqv v Base U L f = O v w Base U L f = O w
38 32 34 37 syl2anc φ f F v T O v = L f w Base U L f = O w
39 23 adantr φ f F v T O v = L f K HL W H
40 simpllr φ f F v T O v = L f f F
41 1 6 2 21 4 5 39 40 lcfl8a φ f F v T O v = L f O O L f = L f w Base U L f = O w
42 38 41 mpbird φ f F v T O v = L f O O L f = L f
43 1 2 6 21 10 23 27 dochocsn φ f F v T O O v = LSpan U v
44 fveq2 O v = L f O O v = O L f
45 43 44 sylan9req φ f F v T O v = L f LSpan U v = O L f
46 45 eqcomd φ f F v T O v = L f O L f = LSpan U v
47 42 46 jca φ f F v T O v = L f O O L f = L f O L f = LSpan U v
48 31 47 impbida φ f F v T O O L f = L f O L f = LSpan U v O v = L f
49 48 rexbidva φ f F v T O O L f = L f O L f = LSpan U v v T O v = L f
50 17 49 bitr3id φ f F O O L f = L f v T O L f = LSpan U v v T O v = L f
51 50 pm5.32da φ f F O O L f = L f v T O L f = LSpan U v f F v T O v = L f
52 16 51 syl5bb φ f g F | O O L g = L g v T O L f = LSpan U v f F v T O v = L f
53 52 rabbidva2 φ f g F | O O L g = L g | v T O L f = LSpan U v = f F | v T O v = L f
54 12 53 eqtrd φ M T = f F | v T O v = L f