Step |
Hyp |
Ref |
Expression |
1 |
|
mapdval4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdval4.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdval4.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
4 |
|
mapdval4.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
5 |
|
mapdval4.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
6 |
|
mapdval4.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
mapdval4.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdval4.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
mapdval4.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
10 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
11 |
|
eqid |
⊢ { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
12 |
1 2 3 10 4 5 6 7 8 9 11
|
mapdval2N |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑇 ) = { 𝑓 ∈ { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } ∣ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) } ) |
13 |
11
|
lcfl1lem |
⊢ ( 𝑓 ∈ { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } ↔ ( 𝑓 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ) ) |
14 |
13
|
anbi1i |
⊢ ( ( 𝑓 ∈ { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( ( 𝑓 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ) ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
15 |
|
anass |
⊢ ( ( ( 𝑓 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ) ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( 𝑓 ∈ 𝐹 ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
16 |
14 15
|
bitri |
⊢ ( ( 𝑓 ∈ { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( 𝑓 ∈ 𝐹 ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ) |
17 |
|
r19.42v |
⊢ ( ∃ 𝑣 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
18 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) |
19 |
18
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
20 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
24 |
23
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
25 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) → 𝑇 ∈ 𝑆 ) |
26 |
21 3
|
lssel |
⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇 ) → 𝑣 ∈ ( Base ‘ 𝑈 ) ) |
27 |
25 26
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) → 𝑣 ∈ ( Base ‘ 𝑈 ) ) |
28 |
27
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) → { 𝑣 } ⊆ ( Base ‘ 𝑈 ) ) |
29 |
28
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → { 𝑣 } ⊆ ( Base ‘ 𝑈 ) ) |
30 |
1 2 6 21 10 24 29
|
dochocsp |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = ( 𝑂 ‘ { 𝑣 } ) ) |
31 |
19 20 30
|
3eqtr3rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) |
32 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → 𝑣 ∈ ( Base ‘ 𝑈 ) ) |
33 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) |
34 |
33
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ { 𝑣 } ) ) |
35 |
|
sneq |
⊢ ( 𝑤 = 𝑣 → { 𝑤 } = { 𝑣 } ) |
36 |
35
|
fveq2d |
⊢ ( 𝑤 = 𝑣 → ( 𝑂 ‘ { 𝑤 } ) = ( 𝑂 ‘ { 𝑣 } ) ) |
37 |
36
|
rspceeqv |
⊢ ( ( 𝑣 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ { 𝑣 } ) ) → ∃ 𝑤 ∈ ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ { 𝑤 } ) ) |
38 |
32 34 37
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → ∃ 𝑤 ∈ ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ { 𝑤 } ) ) |
39 |
23
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
40 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → 𝑓 ∈ 𝐹 ) |
41 |
1 6 2 21 4 5 39 40
|
lcfl8a |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ↔ ∃ 𝑤 ∈ ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ { 𝑤 } ) ) ) |
42 |
38 41
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ) |
43 |
1 2 6 21 10 23 27
|
dochocsn |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) → ( 𝑂 ‘ ( 𝑂 ‘ { 𝑣 } ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) |
44 |
|
fveq2 |
⊢ ( ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) → ( 𝑂 ‘ ( 𝑂 ‘ { 𝑣 } ) ) = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
45 |
43 44
|
sylan9req |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
46 |
45
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) |
47 |
42 46
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
48 |
31 47
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑇 ) → ( ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) ) |
49 |
48
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) → ( ∃ 𝑣 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) ) |
50 |
17 49
|
bitr3id |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) → ( ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) ) |
51 |
50
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝐹 ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ↔ ( 𝑓 ∈ 𝐹 ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) ) ) |
52 |
16 51
|
syl5bb |
⊢ ( 𝜑 → ( ( 𝑓 ∈ { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( 𝑓 ∈ 𝐹 ∧ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) ) ) ) |
53 |
52
|
rabbidva2 |
⊢ ( 𝜑 → { 𝑓 ∈ { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } ∣ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) } = { 𝑓 ∈ 𝐹 ∣ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) } ) |
54 |
12 53
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑇 ) = { 𝑓 ∈ 𝐹 ∣ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) } ) |