Metamath Proof Explorer


Theorem mapdval4N

Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is C_ C ) 2. The unneeded direction of lcfl8a has awkward E. - add another thm with only one direction of it? 3. Swap O{ v } and Lf ? (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval4.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdval4.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdval4.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapdval4.f 𝐹 = ( LFnl ‘ 𝑈 )
mapdval4.l 𝐿 = ( LKer ‘ 𝑈 )
mapdval4.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
mapdval4.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdval4.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdval4.t ( 𝜑𝑇𝑆 )
Assertion mapdval4N ( 𝜑 → ( 𝑀𝑇 ) = { 𝑓𝐹 ∣ ∃ 𝑣𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) } )

Proof

Step Hyp Ref Expression
1 mapdval4.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdval4.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdval4.s 𝑆 = ( LSubSp ‘ 𝑈 )
4 mapdval4.f 𝐹 = ( LFnl ‘ 𝑈 )
5 mapdval4.l 𝐿 = ( LKer ‘ 𝑈 )
6 mapdval4.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
7 mapdval4.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
8 mapdval4.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 mapdval4.t ( 𝜑𝑇𝑆 )
10 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
11 eqid { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) } = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
12 1 2 3 10 4 5 6 7 8 9 11 mapdval2N ( 𝜑 → ( 𝑀𝑇 ) = { 𝑓 ∈ { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) } ∣ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) } )
13 11 lcfl1lem ( 𝑓 ∈ { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) } ↔ ( 𝑓𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ) )
14 13 anbi1i ( ( 𝑓 ∈ { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) } ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( ( 𝑓𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ) ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) )
15 anass ( ( ( 𝑓𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ) ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( 𝑓𝐹 ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) )
16 14 15 bitri ( ( 𝑓 ∈ { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) } ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( 𝑓𝐹 ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) )
17 r19.42v ( ∃ 𝑣𝑇 ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) )
18 simprr ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) )
19 18 fveq2d ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) )
20 simprl ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) )
21 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
22 8 adantr ( ( 𝜑𝑓𝐹 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
23 22 adantr ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
24 23 adantr ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
25 9 adantr ( ( 𝜑𝑓𝐹 ) → 𝑇𝑆 )
26 21 3 lssel ( ( 𝑇𝑆𝑣𝑇 ) → 𝑣 ∈ ( Base ‘ 𝑈 ) )
27 25 26 sylan ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) → 𝑣 ∈ ( Base ‘ 𝑈 ) )
28 27 snssd ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) → { 𝑣 } ⊆ ( Base ‘ 𝑈 ) )
29 28 adantr ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → { 𝑣 } ⊆ ( Base ‘ 𝑈 ) )
30 1 2 6 21 10 24 29 dochocsp ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) = ( 𝑂 ‘ { 𝑣 } ) )
31 19 20 30 3eqtr3rd ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) → ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) )
32 27 adantr ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → 𝑣 ∈ ( Base ‘ 𝑈 ) )
33 simpr ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) )
34 33 eqcomd ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → ( 𝐿𝑓 ) = ( 𝑂 ‘ { 𝑣 } ) )
35 sneq ( 𝑤 = 𝑣 → { 𝑤 } = { 𝑣 } )
36 35 fveq2d ( 𝑤 = 𝑣 → ( 𝑂 ‘ { 𝑤 } ) = ( 𝑂 ‘ { 𝑣 } ) )
37 36 rspceeqv ( ( 𝑣 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿𝑓 ) = ( 𝑂 ‘ { 𝑣 } ) ) → ∃ 𝑤 ∈ ( Base ‘ 𝑈 ) ( 𝐿𝑓 ) = ( 𝑂 ‘ { 𝑤 } ) )
38 32 34 37 syl2anc ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → ∃ 𝑤 ∈ ( Base ‘ 𝑈 ) ( 𝐿𝑓 ) = ( 𝑂 ‘ { 𝑤 } ) )
39 23 adantr ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
40 simpllr ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → 𝑓𝐹 )
41 1 6 2 21 4 5 39 40 lcfl8a ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ↔ ∃ 𝑤 ∈ ( Base ‘ 𝑈 ) ( 𝐿𝑓 ) = ( 𝑂 ‘ { 𝑤 } ) ) )
42 38 41 mpbird ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) )
43 1 2 6 21 10 23 27 dochocsn ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) → ( 𝑂 ‘ ( 𝑂 ‘ { 𝑣 } ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) )
44 fveq2 ( ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) → ( 𝑂 ‘ ( 𝑂 ‘ { 𝑣 } ) ) = ( 𝑂 ‘ ( 𝐿𝑓 ) ) )
45 43 44 sylan9req ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) = ( 𝑂 ‘ ( 𝐿𝑓 ) ) )
46 45 eqcomd ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) )
47 42 46 jca ( ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) ∧ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) )
48 31 47 impbida ( ( ( 𝜑𝑓𝐹 ) ∧ 𝑣𝑇 ) → ( ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) )
49 48 rexbidva ( ( 𝜑𝑓𝐹 ) → ( ∃ 𝑣𝑇 ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ∃ 𝑣𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) )
50 17 49 bitr3id ( ( 𝜑𝑓𝐹 ) → ( ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ∃ 𝑣𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) )
51 50 pm5.32da ( 𝜑 → ( ( 𝑓𝐹 ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) ↔ ( 𝑓𝐹 ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) ) )
52 16 51 syl5bb ( 𝜑 → ( ( 𝑓 ∈ { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) } ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ↔ ( 𝑓𝐹 ∧ ∃ 𝑣𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) ) ) )
53 52 rabbidva2 ( 𝜑 → { 𝑓 ∈ { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) } ∣ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) } = { 𝑓𝐹 ∣ ∃ 𝑣𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) } )
54 12 53 eqtrd ( 𝜑 → ( 𝑀𝑇 ) = { 𝑓𝐹 ∣ ∃ 𝑣𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) } )