Step |
Hyp |
Ref |
Expression |
1 |
|
mapdval4.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdval4.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
mapdval4.s |
|- S = ( LSubSp ` U ) |
4 |
|
mapdval4.f |
|- F = ( LFnl ` U ) |
5 |
|
mapdval4.l |
|- L = ( LKer ` U ) |
6 |
|
mapdval4.o |
|- O = ( ( ocH ` K ) ` W ) |
7 |
|
mapdval4.m |
|- M = ( ( mapd ` K ) ` W ) |
8 |
|
mapdval4.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
mapdval4.t |
|- ( ph -> T e. S ) |
10 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
11 |
|
eqid |
|- { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
12 |
1 2 3 10 4 5 6 7 8 9 11
|
mapdval2N |
|- ( ph -> ( M ` T ) = { f e. { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } | E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) } ) |
13 |
11
|
lcfl1lem |
|- ( f e. { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } <-> ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) ) |
14 |
13
|
anbi1i |
|- ( ( f e. { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) <-> ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) |
15 |
|
anass |
|- ( ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) <-> ( f e. F /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) ) |
16 |
14 15
|
bitri |
|- ( ( f e. { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) <-> ( f e. F /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) ) |
17 |
|
r19.42v |
|- ( E. v e. T ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) <-> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) |
18 |
|
simprr |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) -> ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) |
19 |
18
|
fveq2d |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) -> ( O ` ( O ` ( L ` f ) ) ) = ( O ` ( ( LSpan ` U ) ` { v } ) ) ) |
20 |
|
simprl |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) -> ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) |
21 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
22 |
8
|
adantr |
|- ( ( ph /\ f e. F ) -> ( K e. HL /\ W e. H ) ) |
23 |
22
|
adantr |
|- ( ( ( ph /\ f e. F ) /\ v e. T ) -> ( K e. HL /\ W e. H ) ) |
24 |
23
|
adantr |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) -> ( K e. HL /\ W e. H ) ) |
25 |
9
|
adantr |
|- ( ( ph /\ f e. F ) -> T e. S ) |
26 |
21 3
|
lssel |
|- ( ( T e. S /\ v e. T ) -> v e. ( Base ` U ) ) |
27 |
25 26
|
sylan |
|- ( ( ( ph /\ f e. F ) /\ v e. T ) -> v e. ( Base ` U ) ) |
28 |
27
|
snssd |
|- ( ( ( ph /\ f e. F ) /\ v e. T ) -> { v } C_ ( Base ` U ) ) |
29 |
28
|
adantr |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) -> { v } C_ ( Base ` U ) ) |
30 |
1 2 6 21 10 24 29
|
dochocsp |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) -> ( O ` ( ( LSpan ` U ) ` { v } ) ) = ( O ` { v } ) ) |
31 |
19 20 30
|
3eqtr3rd |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) -> ( O ` { v } ) = ( L ` f ) ) |
32 |
27
|
adantr |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> v e. ( Base ` U ) ) |
33 |
|
simpr |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> ( O ` { v } ) = ( L ` f ) ) |
34 |
33
|
eqcomd |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> ( L ` f ) = ( O ` { v } ) ) |
35 |
|
sneq |
|- ( w = v -> { w } = { v } ) |
36 |
35
|
fveq2d |
|- ( w = v -> ( O ` { w } ) = ( O ` { v } ) ) |
37 |
36
|
rspceeqv |
|- ( ( v e. ( Base ` U ) /\ ( L ` f ) = ( O ` { v } ) ) -> E. w e. ( Base ` U ) ( L ` f ) = ( O ` { w } ) ) |
38 |
32 34 37
|
syl2anc |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> E. w e. ( Base ` U ) ( L ` f ) = ( O ` { w } ) ) |
39 |
23
|
adantr |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> ( K e. HL /\ W e. H ) ) |
40 |
|
simpllr |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> f e. F ) |
41 |
1 6 2 21 4 5 39 40
|
lcfl8a |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) <-> E. w e. ( Base ` U ) ( L ` f ) = ( O ` { w } ) ) ) |
42 |
38 41
|
mpbird |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) |
43 |
1 2 6 21 10 23 27
|
dochocsn |
|- ( ( ( ph /\ f e. F ) /\ v e. T ) -> ( O ` ( O ` { v } ) ) = ( ( LSpan ` U ) ` { v } ) ) |
44 |
|
fveq2 |
|- ( ( O ` { v } ) = ( L ` f ) -> ( O ` ( O ` { v } ) ) = ( O ` ( L ` f ) ) ) |
45 |
43 44
|
sylan9req |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> ( ( LSpan ` U ) ` { v } ) = ( O ` ( L ` f ) ) ) |
46 |
45
|
eqcomd |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) |
47 |
42 46
|
jca |
|- ( ( ( ( ph /\ f e. F ) /\ v e. T ) /\ ( O ` { v } ) = ( L ` f ) ) -> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) |
48 |
31 47
|
impbida |
|- ( ( ( ph /\ f e. F ) /\ v e. T ) -> ( ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) <-> ( O ` { v } ) = ( L ` f ) ) ) |
49 |
48
|
rexbidva |
|- ( ( ph /\ f e. F ) -> ( E. v e. T ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) <-> E. v e. T ( O ` { v } ) = ( L ` f ) ) ) |
50 |
17 49
|
bitr3id |
|- ( ( ph /\ f e. F ) -> ( ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) <-> E. v e. T ( O ` { v } ) = ( L ` f ) ) ) |
51 |
50
|
pm5.32da |
|- ( ph -> ( ( f e. F /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) ) <-> ( f e. F /\ E. v e. T ( O ` { v } ) = ( L ` f ) ) ) ) |
52 |
16 51
|
syl5bb |
|- ( ph -> ( ( f e. { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } /\ E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) ) <-> ( f e. F /\ E. v e. T ( O ` { v } ) = ( L ` f ) ) ) ) |
53 |
52
|
rabbidva2 |
|- ( ph -> { f e. { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } | E. v e. T ( O ` ( L ` f ) ) = ( ( LSpan ` U ) ` { v } ) } = { f e. F | E. v e. T ( O ` { v } ) = ( L ` f ) } ) |
54 |
12 53
|
eqtrd |
|- ( ph -> ( M ` T ) = { f e. F | E. v e. T ( O ` { v } ) = ( L ` f ) } ) |