| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdval2.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdval2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
mapdval2.s |
|- S = ( LSubSp ` U ) |
| 4 |
|
mapdval2.n |
|- N = ( LSpan ` U ) |
| 5 |
|
mapdval2.f |
|- F = ( LFnl ` U ) |
| 6 |
|
mapdval2.l |
|- L = ( LKer ` U ) |
| 7 |
|
mapdval2.o |
|- O = ( ( ocH ` K ) ` W ) |
| 8 |
|
mapdval2.m |
|- M = ( ( mapd ` K ) ` W ) |
| 9 |
|
mapdval2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
mapdval2.t |
|- ( ph -> T e. S ) |
| 11 |
|
mapdval2.c |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
| 12 |
1 2 3 5 6 7 8 9 10 11
|
mapdvalc |
|- ( ph -> ( M ` T ) = { f e. C | ( O ` ( L ` f ) ) C_ T } ) |
| 13 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 14 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) -> U e. LMod ) |
| 15 |
|
simplr |
|- ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) -> ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) |
| 16 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 17 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 18 |
16 4 17
|
islsati |
|- ( ( U e. LMod /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) -> E. v e. ( Base ` U ) ( O ` ( L ` f ) ) = ( N ` { v } ) ) |
| 19 |
14 15 18
|
syl2anc |
|- ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) -> E. v e. ( Base ` U ) ( O ` ( L ` f ) ) = ( N ` { v } ) ) |
| 20 |
|
simprr |
|- ( ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) /\ ( v e. ( Base ` U ) /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) -> ( O ` ( L ` f ) ) = ( N ` { v } ) ) |
| 21 |
|
simplr |
|- ( ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) /\ ( v e. ( Base ` U ) /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) -> ( O ` ( L ` f ) ) C_ T ) |
| 22 |
20 21
|
eqsstrrd |
|- ( ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) /\ ( v e. ( Base ` U ) /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) -> ( N ` { v } ) C_ T ) |
| 23 |
13
|
adantr |
|- ( ( ph /\ f e. C ) -> U e. LMod ) |
| 24 |
23
|
ad3antrrr |
|- ( ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) /\ ( v e. ( Base ` U ) /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) -> U e. LMod ) |
| 25 |
10
|
adantr |
|- ( ( ph /\ f e. C ) -> T e. S ) |
| 26 |
25
|
ad3antrrr |
|- ( ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) /\ ( v e. ( Base ` U ) /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) -> T e. S ) |
| 27 |
|
simprl |
|- ( ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) /\ ( v e. ( Base ` U ) /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) -> v e. ( Base ` U ) ) |
| 28 |
16 3 4 24 26 27
|
ellspsn5b |
|- ( ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) /\ ( v e. ( Base ` U ) /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) -> ( v e. T <-> ( N ` { v } ) C_ T ) ) |
| 29 |
22 28
|
mpbird |
|- ( ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) /\ ( v e. ( Base ` U ) /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) -> v e. T ) |
| 30 |
19 29 20
|
reximssdv |
|- ( ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) /\ ( O ` ( L ` f ) ) C_ T ) -> E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) ) |
| 31 |
30
|
ex |
|- ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) ) -> ( ( O ` ( L ` f ) ) C_ T -> E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) |
| 32 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 33 |
32 3
|
lss0cl |
|- ( ( U e. LMod /\ T e. S ) -> ( 0g ` U ) e. T ) |
| 34 |
13 10 33
|
syl2anc |
|- ( ph -> ( 0g ` U ) e. T ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) -> ( 0g ` U ) e. T ) |
| 36 |
|
simpr |
|- ( ( ph /\ ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) -> ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) |
| 37 |
13
|
adantr |
|- ( ( ph /\ ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) -> U e. LMod ) |
| 38 |
32 4
|
lspsn0 |
|- ( U e. LMod -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
| 39 |
37 38
|
syl |
|- ( ( ph /\ ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
| 40 |
36 39
|
eqtr4d |
|- ( ( ph /\ ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) -> ( O ` ( L ` f ) ) = ( N ` { ( 0g ` U ) } ) ) |
| 41 |
|
sneq |
|- ( v = ( 0g ` U ) -> { v } = { ( 0g ` U ) } ) |
| 42 |
41
|
fveq2d |
|- ( v = ( 0g ` U ) -> ( N ` { v } ) = ( N ` { ( 0g ` U ) } ) ) |
| 43 |
42
|
rspceeqv |
|- ( ( ( 0g ` U ) e. T /\ ( O ` ( L ` f ) ) = ( N ` { ( 0g ` U ) } ) ) -> E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) ) |
| 44 |
35 40 43
|
syl2anc |
|- ( ( ph /\ ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) -> E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) ) |
| 45 |
44
|
adantlr |
|- ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) -> E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) ) |
| 46 |
45
|
a1d |
|- ( ( ( ph /\ f e. C ) /\ ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) -> ( ( O ` ( L ` f ) ) C_ T -> E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) |
| 47 |
9
|
adantr |
|- ( ( ph /\ f e. C ) -> ( K e. HL /\ W e. H ) ) |
| 48 |
11
|
lcfl1lem |
|- ( f e. C <-> ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) ) |
| 49 |
48
|
simplbi |
|- ( f e. C -> f e. F ) |
| 50 |
49
|
adantl |
|- ( ( ph /\ f e. C ) -> f e. F ) |
| 51 |
1 7 2 32 17 5 6 47 50
|
dochsat0 |
|- ( ( ph /\ f e. C ) -> ( ( O ` ( L ` f ) ) e. ( LSAtoms ` U ) \/ ( O ` ( L ` f ) ) = { ( 0g ` U ) } ) ) |
| 52 |
31 46 51
|
mpjaodan |
|- ( ( ph /\ f e. C ) -> ( ( O ` ( L ` f ) ) C_ T -> E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) |
| 53 |
|
simp3 |
|- ( ( ( ph /\ f e. C ) /\ v e. T /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) -> ( O ` ( L ` f ) ) = ( N ` { v } ) ) |
| 54 |
23
|
3ad2ant1 |
|- ( ( ( ph /\ f e. C ) /\ v e. T /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) -> U e. LMod ) |
| 55 |
25
|
3ad2ant1 |
|- ( ( ( ph /\ f e. C ) /\ v e. T /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) -> T e. S ) |
| 56 |
|
simp2 |
|- ( ( ( ph /\ f e. C ) /\ v e. T /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) -> v e. T ) |
| 57 |
3 4 54 55 56
|
ellspsn5 |
|- ( ( ( ph /\ f e. C ) /\ v e. T /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) -> ( N ` { v } ) C_ T ) |
| 58 |
53 57
|
eqsstrd |
|- ( ( ( ph /\ f e. C ) /\ v e. T /\ ( O ` ( L ` f ) ) = ( N ` { v } ) ) -> ( O ` ( L ` f ) ) C_ T ) |
| 59 |
58
|
rexlimdv3a |
|- ( ( ph /\ f e. C ) -> ( E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) -> ( O ` ( L ` f ) ) C_ T ) ) |
| 60 |
52 59
|
impbid |
|- ( ( ph /\ f e. C ) -> ( ( O ` ( L ` f ) ) C_ T <-> E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) ) ) |
| 61 |
60
|
rabbidva |
|- ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ T } = { f e. C | E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) } ) |
| 62 |
12 61
|
eqtrd |
|- ( ph -> ( M ` T ) = { f e. C | E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) } ) |