| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdval.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdval.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
mapdval.s |
|- S = ( LSubSp ` U ) |
| 4 |
|
mapdval.f |
|- F = ( LFnl ` U ) |
| 5 |
|
mapdval.l |
|- L = ( LKer ` U ) |
| 6 |
|
mapdval.o |
|- O = ( ( ocH ` K ) ` W ) |
| 7 |
|
mapdval.m |
|- M = ( ( mapd ` K ) ` W ) |
| 8 |
|
mapdval.k |
|- ( ph -> ( K e. X /\ W e. H ) ) |
| 9 |
|
mapdval.t |
|- ( ph -> T e. S ) |
| 10 |
|
mapdvalc.c |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
| 11 |
1 2 3 4 5 6 7 8 9
|
mapdval |
|- ( ph -> ( M ` T ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } ) |
| 12 |
|
anass |
|- ( ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ ( O ` ( L ` f ) ) C_ T ) <-> ( f e. F /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) ) ) |
| 13 |
10
|
lcfl1lem |
|- ( f e. C <-> ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) ) |
| 14 |
13
|
anbi1i |
|- ( ( f e. C /\ ( O ` ( L ` f ) ) C_ T ) <-> ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ ( O ` ( L ` f ) ) C_ T ) ) |
| 15 |
14
|
bicomi |
|- ( ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ ( O ` ( L ` f ) ) C_ T ) <-> ( f e. C /\ ( O ` ( L ` f ) ) C_ T ) ) |
| 16 |
15
|
a1i |
|- ( ph -> ( ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ ( O ` ( L ` f ) ) C_ T ) <-> ( f e. C /\ ( O ` ( L ` f ) ) C_ T ) ) ) |
| 17 |
12 16
|
bitr3id |
|- ( ph -> ( ( f e. F /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) ) <-> ( f e. C /\ ( O ` ( L ` f ) ) C_ T ) ) ) |
| 18 |
17
|
rabbidva2 |
|- ( ph -> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } = { f e. C | ( O ` ( L ` f ) ) C_ T } ) |
| 19 |
11 18
|
eqtrd |
|- ( ph -> ( M ` T ) = { f e. C | ( O ` ( L ` f ) ) C_ T } ) |