Metamath Proof Explorer


Theorem mapdvalc

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses mapdval.h
|- H = ( LHyp ` K )
mapdval.u
|- U = ( ( DVecH ` K ) ` W )
mapdval.s
|- S = ( LSubSp ` U )
mapdval.f
|- F = ( LFnl ` U )
mapdval.l
|- L = ( LKer ` U )
mapdval.o
|- O = ( ( ocH ` K ) ` W )
mapdval.m
|- M = ( ( mapd ` K ) ` W )
mapdval.k
|- ( ph -> ( K e. X /\ W e. H ) )
mapdval.t
|- ( ph -> T e. S )
mapdvalc.c
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
Assertion mapdvalc
|- ( ph -> ( M ` T ) = { f e. C | ( O ` ( L ` f ) ) C_ T } )

Proof

Step Hyp Ref Expression
1 mapdval.h
 |-  H = ( LHyp ` K )
2 mapdval.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdval.s
 |-  S = ( LSubSp ` U )
4 mapdval.f
 |-  F = ( LFnl ` U )
5 mapdval.l
 |-  L = ( LKer ` U )
6 mapdval.o
 |-  O = ( ( ocH ` K ) ` W )
7 mapdval.m
 |-  M = ( ( mapd ` K ) ` W )
8 mapdval.k
 |-  ( ph -> ( K e. X /\ W e. H ) )
9 mapdval.t
 |-  ( ph -> T e. S )
10 mapdvalc.c
 |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
11 1 2 3 4 5 6 7 8 9 mapdval
 |-  ( ph -> ( M ` T ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } )
12 anass
 |-  ( ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ ( O ` ( L ` f ) ) C_ T ) <-> ( f e. F /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) ) )
13 10 lcfl1lem
 |-  ( f e. C <-> ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) )
14 13 anbi1i
 |-  ( ( f e. C /\ ( O ` ( L ` f ) ) C_ T ) <-> ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ ( O ` ( L ` f ) ) C_ T ) )
15 14 bicomi
 |-  ( ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ ( O ` ( L ` f ) ) C_ T ) <-> ( f e. C /\ ( O ` ( L ` f ) ) C_ T ) )
16 15 a1i
 |-  ( ph -> ( ( ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) /\ ( O ` ( L ` f ) ) C_ T ) <-> ( f e. C /\ ( O ` ( L ` f ) ) C_ T ) ) )
17 12 16 bitr3id
 |-  ( ph -> ( ( f e. F /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) ) <-> ( f e. C /\ ( O ` ( L ` f ) ) C_ T ) ) )
18 17 rabbidva2
 |-  ( ph -> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } = { f e. C | ( O ` ( L ` f ) ) C_ T } )
19 11 18 eqtrd
 |-  ( ph -> ( M ` T ) = { f e. C | ( O ` ( L ` f ) ) C_ T } )