Step |
Hyp |
Ref |
Expression |
1 |
|
mapdval.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdval.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
mapdval.s |
|- S = ( LSubSp ` U ) |
4 |
|
mapdval.f |
|- F = ( LFnl ` U ) |
5 |
|
mapdval.l |
|- L = ( LKer ` U ) |
6 |
|
mapdval.o |
|- O = ( ( ocH ` K ) ` W ) |
7 |
|
mapdval.m |
|- M = ( ( mapd ` K ) ` W ) |
8 |
|
mapdval.k |
|- ( ph -> ( K e. X /\ W e. H ) ) |
9 |
|
mapdval.t |
|- ( ph -> T e. S ) |
10 |
1 2 3 4 5 6 7
|
mapdfval |
|- ( ( K e. X /\ W e. H ) -> M = ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) ) |
11 |
8 10
|
syl |
|- ( ph -> M = ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) ) |
12 |
11
|
fveq1d |
|- ( ph -> ( M ` T ) = ( ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) ` T ) ) |
13 |
4
|
fvexi |
|- F e. _V |
14 |
13
|
rabex |
|- { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } e. _V |
15 |
|
sseq2 |
|- ( s = T -> ( ( O ` ( L ` f ) ) C_ s <-> ( O ` ( L ` f ) ) C_ T ) ) |
16 |
15
|
anbi2d |
|- ( s = T -> ( ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) <-> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) ) ) |
17 |
16
|
rabbidv |
|- ( s = T -> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } ) |
18 |
|
eqid |
|- ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) = ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) |
19 |
17 18
|
fvmptg |
|- ( ( T e. S /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } e. _V ) -> ( ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) ` T ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } ) |
20 |
9 14 19
|
sylancl |
|- ( ph -> ( ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) ` T ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } ) |
21 |
12 20
|
eqtrd |
|- ( ph -> ( M ` T ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } ) |