Metamath Proof Explorer


Theorem mapdval

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses mapdval.h
|- H = ( LHyp ` K )
mapdval.u
|- U = ( ( DVecH ` K ) ` W )
mapdval.s
|- S = ( LSubSp ` U )
mapdval.f
|- F = ( LFnl ` U )
mapdval.l
|- L = ( LKer ` U )
mapdval.o
|- O = ( ( ocH ` K ) ` W )
mapdval.m
|- M = ( ( mapd ` K ) ` W )
mapdval.k
|- ( ph -> ( K e. X /\ W e. H ) )
mapdval.t
|- ( ph -> T e. S )
Assertion mapdval
|- ( ph -> ( M ` T ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } )

Proof

Step Hyp Ref Expression
1 mapdval.h
 |-  H = ( LHyp ` K )
2 mapdval.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdval.s
 |-  S = ( LSubSp ` U )
4 mapdval.f
 |-  F = ( LFnl ` U )
5 mapdval.l
 |-  L = ( LKer ` U )
6 mapdval.o
 |-  O = ( ( ocH ` K ) ` W )
7 mapdval.m
 |-  M = ( ( mapd ` K ) ` W )
8 mapdval.k
 |-  ( ph -> ( K e. X /\ W e. H ) )
9 mapdval.t
 |-  ( ph -> T e. S )
10 1 2 3 4 5 6 7 mapdfval
 |-  ( ( K e. X /\ W e. H ) -> M = ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) )
11 8 10 syl
 |-  ( ph -> M = ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) )
12 11 fveq1d
 |-  ( ph -> ( M ` T ) = ( ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) ` T ) )
13 4 fvexi
 |-  F e. _V
14 13 rabex
 |-  { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } e. _V
15 sseq2
 |-  ( s = T -> ( ( O ` ( L ` f ) ) C_ s <-> ( O ` ( L ` f ) ) C_ T ) )
16 15 anbi2d
 |-  ( s = T -> ( ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) <-> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) ) )
17 16 rabbidv
 |-  ( s = T -> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } )
18 eqid
 |-  ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) = ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } )
19 17 18 fvmptg
 |-  ( ( T e. S /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } e. _V ) -> ( ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) ` T ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } )
20 9 14 19 sylancl
 |-  ( ph -> ( ( s e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ s ) } ) ` T ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } )
21 12 20 eqtrd
 |-  ( ph -> ( M ` T ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ T ) } )