Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapdval2.h | |- H = ( LHyp ` K ) |
|
| mapdval2.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| mapdval2.s | |- S = ( LSubSp ` U ) |
||
| mapdval2.n | |- N = ( LSpan ` U ) |
||
| mapdval2.f | |- F = ( LFnl ` U ) |
||
| mapdval2.l | |- L = ( LKer ` U ) |
||
| mapdval2.o | |- O = ( ( ocH ` K ) ` W ) |
||
| mapdval2.m | |- M = ( ( mapd ` K ) ` W ) |
||
| mapdval2.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| mapdval2.t | |- ( ph -> T e. S ) |
||
| mapdval2.c | |- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
||
| Assertion | mapdval3N | |- ( ph -> ( M ` T ) = U_ v e. T { f e. C | ( O ` ( L ` f ) ) = ( N ` { v } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdval2.h | |- H = ( LHyp ` K ) |
|
| 2 | mapdval2.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 3 | mapdval2.s | |- S = ( LSubSp ` U ) |
|
| 4 | mapdval2.n | |- N = ( LSpan ` U ) |
|
| 5 | mapdval2.f | |- F = ( LFnl ` U ) |
|
| 6 | mapdval2.l | |- L = ( LKer ` U ) |
|
| 7 | mapdval2.o | |- O = ( ( ocH ` K ) ` W ) |
|
| 8 | mapdval2.m | |- M = ( ( mapd ` K ) ` W ) |
|
| 9 | mapdval2.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 10 | mapdval2.t | |- ( ph -> T e. S ) |
|
| 11 | mapdval2.c | |- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
|
| 12 | 1 2 3 4 5 6 7 8 9 10 11 | mapdval2N | |- ( ph -> ( M ` T ) = { f e. C | E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) } ) |
| 13 | iunrab | |- U_ v e. T { f e. C | ( O ` ( L ` f ) ) = ( N ` { v } ) } = { f e. C | E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) } |
|
| 14 | 12 13 | eqtr4di | |- ( ph -> ( M ` T ) = U_ v e. T { f e. C | ( O ` ( L ` f ) ) = ( N ` { v } ) } ) |