Metamath Proof Explorer


Theorem mapdval3N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval2.h
|- H = ( LHyp ` K )
mapdval2.u
|- U = ( ( DVecH ` K ) ` W )
mapdval2.s
|- S = ( LSubSp ` U )
mapdval2.n
|- N = ( LSpan ` U )
mapdval2.f
|- F = ( LFnl ` U )
mapdval2.l
|- L = ( LKer ` U )
mapdval2.o
|- O = ( ( ocH ` K ) ` W )
mapdval2.m
|- M = ( ( mapd ` K ) ` W )
mapdval2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdval2.t
|- ( ph -> T e. S )
mapdval2.c
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
Assertion mapdval3N
|- ( ph -> ( M ` T ) = U_ v e. T { f e. C | ( O ` ( L ` f ) ) = ( N ` { v } ) } )

Proof

Step Hyp Ref Expression
1 mapdval2.h
 |-  H = ( LHyp ` K )
2 mapdval2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdval2.s
 |-  S = ( LSubSp ` U )
4 mapdval2.n
 |-  N = ( LSpan ` U )
5 mapdval2.f
 |-  F = ( LFnl ` U )
6 mapdval2.l
 |-  L = ( LKer ` U )
7 mapdval2.o
 |-  O = ( ( ocH ` K ) ` W )
8 mapdval2.m
 |-  M = ( ( mapd ` K ) ` W )
9 mapdval2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 mapdval2.t
 |-  ( ph -> T e. S )
11 mapdval2.c
 |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
12 1 2 3 4 5 6 7 8 9 10 11 mapdval2N
 |-  ( ph -> ( M ` T ) = { f e. C | E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) } )
13 iunrab
 |-  U_ v e. T { f e. C | ( O ` ( L ` f ) ) = ( N ` { v } ) } = { f e. C | E. v e. T ( O ` ( L ` f ) ) = ( N ` { v } ) }
14 12 13 eqtr4di
 |-  ( ph -> ( M ` T ) = U_ v e. T { f e. C | ( O ` ( L ` f ) ) = ( N ` { v } ) } )