Step |
Hyp |
Ref |
Expression |
1 |
|
mapdval2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdval2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdval2.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
4 |
|
mapdval2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
mapdval2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
mapdval2.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
mapdval2.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdval2.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
mapdval2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
mapdval2.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
11 |
|
mapdval2.c |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
mapdval2N |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑇 ) = { 𝑓 ∈ 𝐶 ∣ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( 𝑁 ‘ { 𝑣 } ) } ) |
13 |
|
iunrab |
⊢ ∪ 𝑣 ∈ 𝑇 { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( 𝑁 ‘ { 𝑣 } ) } = { 𝑓 ∈ 𝐶 ∣ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( 𝑁 ‘ { 𝑣 } ) } |
14 |
12 13
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑇 ) = ∪ 𝑣 ∈ 𝑇 { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( 𝑁 ‘ { 𝑣 } ) } ) |