Metamath Proof Explorer


Theorem mapdval3N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval2.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdval2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdval2.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapdval2.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdval2.f 𝐹 = ( LFnl ‘ 𝑈 )
mapdval2.l 𝐿 = ( LKer ‘ 𝑈 )
mapdval2.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
mapdval2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdval2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdval2.t ( 𝜑𝑇𝑆 )
mapdval2.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
Assertion mapdval3N ( 𝜑 → ( 𝑀𝑇 ) = 𝑣𝑇 { 𝑓𝐶 ∣ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( 𝑁 ‘ { 𝑣 } ) } )

Proof

Step Hyp Ref Expression
1 mapdval2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdval2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdval2.s 𝑆 = ( LSubSp ‘ 𝑈 )
4 mapdval2.n 𝑁 = ( LSpan ‘ 𝑈 )
5 mapdval2.f 𝐹 = ( LFnl ‘ 𝑈 )
6 mapdval2.l 𝐿 = ( LKer ‘ 𝑈 )
7 mapdval2.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
8 mapdval2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
9 mapdval2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 mapdval2.t ( 𝜑𝑇𝑆 )
11 mapdval2.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
12 1 2 3 4 5 6 7 8 9 10 11 mapdval2N ( 𝜑 → ( 𝑀𝑇 ) = { 𝑓𝐶 ∣ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( 𝑁 ‘ { 𝑣 } ) } )
13 iunrab 𝑣𝑇 { 𝑓𝐶 ∣ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( 𝑁 ‘ { 𝑣 } ) } = { 𝑓𝐶 ∣ ∃ 𝑣𝑇 ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( 𝑁 ‘ { 𝑣 } ) }
14 12 13 eqtr4di ( 𝜑 → ( 𝑀𝑇 ) = 𝑣𝑇 { 𝑓𝐶 ∣ ( 𝑂 ‘ ( 𝐿𝑓 ) ) = ( 𝑁 ‘ { 𝑣 } ) } )